Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlnv | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlnv | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlobn 29250 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
2 | bnnv 29228 | . 2 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 NrmCVeccnv 28946 CBanccbn 29224 CHilOLDchlo 29247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-cbn 29225 df-hlo 29248 |
This theorem is referenced by: hlnvi 29254 hlvc 29255 hladdf 29261 hlcom 29262 hlass 29263 hl0cl 29264 hladdid 29265 hlmulf 29266 hlmulid 29267 hlmulass 29268 hldi 29269 hldir 29270 hlmul0 29271 hlipf 29272 hlipcj 29273 hlipgt0 29276 |
Copyright terms: Public domain | W3C validator |