| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlnv | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlnv | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlobn 30824 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
| 2 | bnnv 30802 | . 2 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 NrmCVeccnv 30520 CBanccbn 30798 CHilOLDchlo 30821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-cbn 30799 df-hlo 30822 |
| This theorem is referenced by: hlnvi 30828 hlvc 30829 hladdf 30835 hlcom 30836 hlass 30837 hl0cl 30838 hladdid 30839 hlmulf 30840 hlmulid 30841 hlmulass 30842 hldi 30843 hldir 30844 hlmul0 30845 hlipf 30846 hlipcj 30847 hlipgt0 30850 |
| Copyright terms: Public domain | W3C validator |