MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlnv Structured version   Visualization version   GIF version

Theorem hlnv 30820
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlnv (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)

Proof of Theorem hlnv
StepHypRef Expression
1 hlobn 30817 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
2 bnnv 30795 . 2 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
31, 2syl 17 1 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  NrmCVeccnv 30513  CBanccbn 30791  CHilOLDchlo 30814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-cbn 30792  df-hlo 30815
This theorem is referenced by:  hlnvi  30821  hlvc  30822  hladdf  30828  hlcom  30829  hlass  30830  hl0cl  30831  hladdid  30832  hlmulf  30833  hlmulid  30834  hlmulass  30835  hldi  30836  hldir  30837  hlmul0  30838  hlipf  30839  hlipcj  30840  hlipgt0  30843
  Copyright terms: Public domain W3C validator