Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlnv | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlnv | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlobn 29151 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
2 | bnnv 29129 | . 2 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 NrmCVeccnv 28847 CBanccbn 29125 CHilOLDchlo 29148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-cbn 29126 df-hlo 29149 |
This theorem is referenced by: hlnvi 29155 hlvc 29156 hladdf 29162 hlcom 29163 hlass 29164 hl0cl 29165 hladdid 29166 hlmulf 29167 hlmulid 29168 hlmulass 29169 hldi 29170 hldir 29171 hlmul0 29172 hlipf 29173 hlipcj 29174 hlipgt0 29177 |
Copyright terms: Public domain | W3C validator |