| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlnv | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlnv | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlobn 30866 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
| 2 | bnnv 30844 | . 2 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 NrmCVeccnv 30562 CBanccbn 30840 CHilOLDchlo 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-cbn 30841 df-hlo 30864 |
| This theorem is referenced by: hlnvi 30870 hlvc 30871 hladdf 30877 hlcom 30878 hlass 30879 hl0cl 30880 hladdid 30881 hlmulf 30882 hlmulid 30883 hlmulass 30884 hldi 30885 hldir 30886 hlmul0 30887 hlipf 30888 hlipcj 30889 hlipgt0 30892 |
| Copyright terms: Public domain | W3C validator |