MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlnv Structured version   Visualization version   GIF version

Theorem hlnv 30875
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlnv (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)

Proof of Theorem hlnv
StepHypRef Expression
1 hlobn 30872 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
2 bnnv 30850 . 2 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
31, 2syl 17 1 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  NrmCVeccnv 30568  CBanccbn 30846  CHilOLDchlo 30869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fv 6496  df-cbn 30847  df-hlo 30870
This theorem is referenced by:  hlnvi  30876  hlvc  30877  hladdf  30883  hlcom  30884  hlass  30885  hl0cl  30886  hladdid  30887  hlmulf  30888  hlmulid  30889  hlmulass  30890  hldi  30891  hldir  30892  hlmul0  30893  hlipf  30894  hlipcj  30895  hlipgt0  30898
  Copyright terms: Public domain W3C validator