MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlnv Structured version   Visualization version   GIF version

Theorem hlnv 30872
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlnv (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)

Proof of Theorem hlnv
StepHypRef Expression
1 hlobn 30869 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
2 bnnv 30847 . 2 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
31, 2syl 17 1 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  NrmCVeccnv 30565  CBanccbn 30843  CHilOLDchlo 30866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-cbn 30844  df-hlo 30867
This theorem is referenced by:  hlnvi  30873  hlvc  30874  hladdf  30880  hlcom  30881  hlass  30882  hl0cl  30883  hladdid  30884  hlmulf  30885  hlmulid  30886  hlmulass  30887  hldi  30888  hldir  30889  hlmul0  30890  hlipf  30891  hlipcj  30892  hlipgt0  30895
  Copyright terms: Public domain W3C validator