| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlnv | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlnv | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlobn 30872 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
| 2 | bnnv 30850 | . 2 ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 NrmCVeccnv 30568 CBanccbn 30846 CHilOLDchlo 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-cbn 30847 df-hlo 30870 |
| This theorem is referenced by: hlnvi 30876 hlvc 30877 hladdf 30883 hlcom 30884 hlass 30885 hl0cl 30886 hladdid 30887 hlmulf 30888 hlmulid 30889 hlmulass 30890 hldi 30891 hldir 30892 hlmul0 30893 hlipf 30894 hlipcj 30895 hlipgt0 30898 |
| Copyright terms: Public domain | W3C validator |