MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlnv Structured version   Visualization version   GIF version

Theorem hlnv 30923
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlnv (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)

Proof of Theorem hlnv
StepHypRef Expression
1 hlobn 30920 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
2 bnnv 30898 . 2 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
31, 2syl 17 1 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  NrmCVeccnv 30616  CBanccbn 30894  CHilOLDchlo 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-cbn 30895  df-hlo 30918
This theorem is referenced by:  hlnvi  30924  hlvc  30925  hladdf  30931  hlcom  30932  hlass  30933  hl0cl  30934  hladdid  30935  hlmulf  30936  hlmulid  30937  hlmulass  30938  hldi  30939  hldir  30940  hlmul0  30941  hlipf  30942  hlipcj  30943  hlipgt0  30946
  Copyright terms: Public domain W3C validator