MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlrel Structured version   Visualization version   GIF version

Theorem hlrel 30687
Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlrel Rel CHilOLD

Proof of Theorem hlrel
StepHypRef Expression
1 hlobn 30685 . . 3 (𝑥 ∈ CHilOLD𝑥 ∈ CBan)
21ssriv 3982 . 2 CHilOLD ⊆ CBan
3 bnrel 30664 . 2 Rel CBan
4 relss 5777 . 2 (CHilOLD ⊆ CBan → (Rel CBan → Rel CHilOLD))
52, 3, 4mp2 9 1 Rel CHilOLD
Colors of variables: wff setvar class
Syntax hints:  wss 3944  Rel wrel 5677  CBanccbn 30659  CHilOLDchlo 30682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-iota 6494  df-fv 6550  df-oprab 7418  df-nv 30389  df-cbn 30660  df-hlo 30683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator