MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlrel Structured version   Visualization version   GIF version

Theorem hlrel 30922
Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlrel Rel CHilOLD

Proof of Theorem hlrel
StepHypRef Expression
1 hlobn 30920 . . 3 (𝑥 ∈ CHilOLD𝑥 ∈ CBan)
21ssriv 4012 . 2 CHilOLD ⊆ CBan
3 bnrel 30899 . 2 Rel CBan
4 relss 5805 . 2 (CHilOLD ⊆ CBan → (Rel CBan → Rel CHilOLD))
52, 3, 4mp2 9 1 Rel CHilOLD
Colors of variables: wff setvar class
Syntax hints:  wss 3976  Rel wrel 5705  CBanccbn 30894  CHilOLDchlo 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-iota 6525  df-fv 6581  df-oprab 7452  df-nv 30624  df-cbn 30895  df-hlo 30918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator