| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlrel | Structured version Visualization version GIF version | ||
| Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlrel | ⊢ Rel CHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlobn 30850 | . . 3 ⊢ (𝑥 ∈ CHilOLD → 𝑥 ∈ CBan) | |
| 2 | 1 | ssriv 3941 | . 2 ⊢ CHilOLD ⊆ CBan |
| 3 | bnrel 30829 | . 2 ⊢ Rel CBan | |
| 4 | relss 5729 | . 2 ⊢ (CHilOLD ⊆ CBan → (Rel CBan → Rel CHilOLD)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CHilOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 Rel wrel 5628 CBanccbn 30824 CHilOLDchlo 30847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-iota 6442 df-fv 6494 df-oprab 7357 df-nv 30554 df-cbn 30825 df-hlo 30848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |