MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlrel Structured version   Visualization version   GIF version

Theorem hlrel 30826
Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlrel Rel CHilOLD

Proof of Theorem hlrel
StepHypRef Expression
1 hlobn 30824 . . 3 (𝑥 ∈ CHilOLD𝑥 ∈ CBan)
21ssriv 3953 . 2 CHilOLD ⊆ CBan
3 bnrel 30803 . 2 Rel CBan
4 relss 5747 . 2 (CHilOLD ⊆ CBan → (Rel CBan → Rel CHilOLD))
52, 3, 4mp2 9 1 Rel CHilOLD
Colors of variables: wff setvar class
Syntax hints:  wss 3917  Rel wrel 5646  CBanccbn 30798  CHilOLDchlo 30821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-iota 6467  df-fv 6522  df-oprab 7394  df-nv 30528  df-cbn 30799  df-hlo 30822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator