MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlrel Structured version   Visualization version   GIF version

Theorem hlrel 29252
Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlrel Rel CHilOLD

Proof of Theorem hlrel
StepHypRef Expression
1 hlobn 29250 . . 3 (𝑥 ∈ CHilOLD𝑥 ∈ CBan)
21ssriv 3925 . 2 CHilOLD ⊆ CBan
3 bnrel 29229 . 2 Rel CBan
4 relss 5692 . 2 (CHilOLD ⊆ CBan → (Rel CBan → Rel CHilOLD))
52, 3, 4mp2 9 1 Rel CHilOLD
Colors of variables: wff setvar class
Syntax hints:  wss 3887  Rel wrel 5594  CBanccbn 29224  CHilOLDchlo 29247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-iota 6391  df-fv 6441  df-oprab 7279  df-nv 28954  df-cbn 29225  df-hlo 29248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator