![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichnfimlem2 | Structured version Visualization version GIF version |
Description: Lemma for ichnfimlem3 43127: When substituting successively for two always equal variables, the second substitution has no effect. (Contributed by Wolf Lammen, 6-Aug-2023.) |
Ref | Expression |
---|---|
ichnfimlem2 | ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfs1v 2239 | . . 3 ⊢ Ⅎ𝑥[𝑏 / 𝑥]𝜑 | |
2 | nfa1 2123 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑦 | |
3 | drsb1 2491 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑏 / 𝑥]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
4 | 2, 3 | nfbidf 2193 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥[𝑏 / 𝑥]𝜑 ↔ Ⅎ𝑥[𝑏 / 𝑦]𝜑)) |
5 | 1, 4 | mpbii 234 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑏 / 𝑦]𝜑) |
6 | sbft 2235 | . 2 ⊢ (Ⅎ𝑥[𝑏 / 𝑦]𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
7 | 5, 6 | syl 17 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∀wal 1523 Ⅎwnf 1769 [wsb 2044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-12 2143 ax-13 2346 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1766 df-nf 1770 df-sb 2045 |
This theorem is referenced by: ichnfimlem3 43127 |
Copyright terms: Public domain | W3C validator |