| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifmpt2v | Structured version Visualization version GIF version | ||
| Description: Move a conditional inside and outside a function in maps-to notation. (Contributed by SN, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| ifmpt2v | ⊢ (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥 ∈ 𝐴 ↦ 𝐵), (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4482 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐶) = 𝐵) | |
| 2 | 1 | mpteq2dv 5189 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 3 | iftrue 4482 | . . 3 ⊢ (𝜑 → if(𝜑, (𝑥 ∈ 𝐴 ↦ 𝐵), (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 2, 3 | eqtr4d 2771 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥 ∈ 𝐴 ↦ 𝐵), (𝑥 ∈ 𝐴 ↦ 𝐶))) |
| 5 | iffalse 4485 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐶) = 𝐶) | |
| 6 | 5 | mpteq2dv 5189 | . . 3 ⊢ (¬ 𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 7 | iffalse 4485 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, (𝑥 ∈ 𝐴 ↦ 𝐵), (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 8 | 6, 7 | eqtr4d 2771 | . 2 ⊢ (¬ 𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥 ∈ 𝐴 ↦ 𝐵), (𝑥 ∈ 𝐴 ↦ 𝐶))) |
| 9 | 4, 8 | pm2.61i 182 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥 ∈ 𝐴 ↦ 𝐵), (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ifcif 4476 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: psdmvr 22094 |
| Copyright terms: Public domain | W3C validator |