MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifmpt2v Structured version   Visualization version   GIF version

Theorem ifmpt2v 7535
Description: Move a conditional inside and outside a function in maps-to notation. (Contributed by SN, 16-Oct-2025.)
Assertion
Ref Expression
ifmpt2v (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥𝐴𝐵), (𝑥𝐴𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ifmpt2v
StepHypRef Expression
1 iftrue 4531 . . . 4 (𝜑 → if(𝜑, 𝐵, 𝐶) = 𝐵)
21mpteq2dv 5244 . . 3 (𝜑 → (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = (𝑥𝐴𝐵))
3 iftrue 4531 . . 3 (𝜑 → if(𝜑, (𝑥𝐴𝐵), (𝑥𝐴𝐶)) = (𝑥𝐴𝐵))
42, 3eqtr4d 2780 . 2 (𝜑 → (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥𝐴𝐵), (𝑥𝐴𝐶)))
5 iffalse 4534 . . . 4 𝜑 → if(𝜑, 𝐵, 𝐶) = 𝐶)
65mpteq2dv 5244 . . 3 𝜑 → (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = (𝑥𝐴𝐶))
7 iffalse 4534 . . 3 𝜑 → if(𝜑, (𝑥𝐴𝐵), (𝑥𝐴𝐶)) = (𝑥𝐴𝐶))
86, 7eqtr4d 2780 . 2 𝜑 → (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥𝐴𝐵), (𝑥𝐴𝐶)))
94, 8pm2.61i 182 1 (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝑥𝐴𝐵), (𝑥𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  ifcif 4525  cmpt 5225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-if 4526  df-opab 5206  df-mpt 5226
This theorem is referenced by:  psdmvr  22173
  Copyright terms: Public domain W3C validator