![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifov | Structured version Visualization version GIF version |
Description: Move a conditional outside of an operation. (Contributed by AV, 11-Nov-2019.) |
Ref | Expression |
---|---|
ifov | ⊢ (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7437 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐹𝐵)) | |
2 | oveq 7437 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐺𝐵)) | |
3 | 1, 2 | ifsb 4544 | 1 ⊢ (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4531 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-if 4532 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: monmatcollpw 22801 |
Copyright terms: Public domain | W3C validator |