![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifov | Structured version Visualization version GIF version |
Description: Move a conditional outside of an operation. (Contributed by AV, 11-Nov-2019.) |
Ref | Expression |
---|---|
ifov | ⊢ (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7418 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐹𝐵)) | |
2 | oveq 7418 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐺𝐵)) | |
3 | 1, 2 | ifsb 4541 | 1 ⊢ (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ifcif 4528 (class class class)co 7412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-if 4529 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 |
This theorem is referenced by: monmatcollpw 22514 |
Copyright terms: Public domain | W3C validator |