MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifov Structured version   Visualization version   GIF version

Theorem ifov 7490
Description: Move a conditional outside of an operation. (Contributed by AV, 11-Nov-2019.)
Assertion
Ref Expression
ifov (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵))

Proof of Theorem ifov
StepHypRef Expression
1 oveq 7393 . 2 (if(𝜑, 𝐹, 𝐺) = 𝐹 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐹𝐵))
2 oveq 7393 . 2 (if(𝜑, 𝐹, 𝐺) = 𝐺 → (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = (𝐴𝐺𝐵))
31, 2ifsb 4502 1 (𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4488  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-if 4489  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  monmatcollpw  22666
  Copyright terms: Public domain W3C validator