MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmoprab Structured version   Visualization version   GIF version

Theorem dmoprab 7492
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
dmoprab dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dmoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 7447 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
21dmeqi 5868 . 2 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = dom {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
3 dmopab 5879 . 2 dom {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 exrot3 2166 . . . . 5 (∃𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 19.42v 1953 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑))
652exbii 1849 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑))
74, 6bitri 275 . . . 4 (∃𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑))
87abbii 2796 . . 3 {𝑤 ∣ ∃𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑)}
9 df-opab 5170 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑)}
108, 9eqtr4i 2755 . 2 {𝑤 ∣ ∃𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑}
112, 3, 103eqtri 2756 1 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  {cab 2707  cop 4595  {copab 5169  dom cdm 5638  {coprab 7388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-dm 5648  df-oprab 7391
This theorem is referenced by:  dmoprabss  7493  reldmoprab  7496  fnoprabg  7512  1st2val  7996  2nd2val  7997  joindm  18334  meetdm  18348  dmscut  27723  linedegen  36131
  Copyright terms: Public domain W3C validator