![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmoprab | Structured version Visualization version GIF version |
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
dmoprab | ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 7508 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | 1 | dmeqi 5929 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = dom {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
3 | dmopab 5940 | . 2 ⊢ dom {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
4 | exrot3 2166 | . . . . 5 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | 19.42v 1953 | . . . . . 6 ⊢ (∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) | |
6 | 5 | 2exbii 1847 | . . . . 5 ⊢ (∃𝑥∃𝑦∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) |
7 | 4, 6 | bitri 275 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) |
8 | 7 | abbii 2812 | . . 3 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)} |
9 | df-opab 5229 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)} | |
10 | 8, 9 | eqtr4i 2771 | . 2 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
11 | 2, 3, 10 | 3eqtri 2772 | 1 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 {cab 2717 〈cop 4654 {copab 5228 dom cdm 5700 {coprab 7449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-dm 5710 df-oprab 7452 |
This theorem is referenced by: dmoprabss 7553 reldmoprab 7556 fnoprabg 7573 1st2val 8058 2nd2val 8059 joindm 18445 meetdm 18459 dmscut 27874 linedegen 36107 |
Copyright terms: Public domain | W3C validator |