![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmoprab | Structured version Visualization version GIF version |
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
dmoprab | ⊢ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 7469 | . . 3 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | 1 | dmeqi 5903 | . 2 ⊢ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = dom {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
3 | dmopab 5914 | . 2 ⊢ dom {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
4 | exrot3 2163 | . . . . 5 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
5 | 19.42v 1955 | . . . . . 6 ⊢ (∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑)) | |
6 | 5 | 2exbii 1849 | . . . . 5 ⊢ (∃𝑥∃𝑦∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑)) |
7 | 4, 6 | bitri 274 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑)) |
8 | 7 | abbii 2800 | . . 3 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑)} |
9 | df-opab 5210 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝜑)} | |
10 | 8, 9 | eqtr4i 2761 | . 2 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑} |
11 | 2, 3, 10 | 3eqtri 2762 | 1 ⊢ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∃wex 1779 {cab 2707 ⟨cop 4633 {copab 5209 dom cdm 5675 {coprab 7412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-dm 5685 df-oprab 7415 |
This theorem is referenced by: dmoprabss 7513 reldmoprab 7516 fnoprabg 7533 1st2val 8005 2nd2val 8006 joindm 18332 meetdm 18346 dmscut 27549 linedegen 35419 |
Copyright terms: Public domain | W3C validator |