| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmoprab | Structured version Visualization version GIF version | ||
| Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| dmoprab | ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab2 7404 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | 1 | dmeqi 5844 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = dom {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 3 | dmopab 5855 | . 2 ⊢ dom {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 4 | exrot3 2168 | . . . . 5 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 5 | 19.42v 1954 | . . . . . 6 ⊢ (∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) | |
| 6 | 5 | 2exbii 1850 | . . . . 5 ⊢ (∃𝑥∃𝑦∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) |
| 7 | 4, 6 | bitri 275 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) |
| 8 | 7 | abbii 2798 | . . 3 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)} |
| 9 | df-opab 5154 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)} | |
| 10 | 8, 9 | eqtr4i 2757 | . 2 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
| 11 | 2, 3, 10 | 3eqtri 2758 | 1 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 〈cop 4582 {copab 5153 dom cdm 5616 {coprab 7347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-dm 5626 df-oprab 7350 |
| This theorem is referenced by: dmoprabss 7450 reldmoprab 7453 fnoprabg 7469 1st2val 7949 2nd2val 7950 joindm 18276 meetdm 18290 dmscut 27750 linedegen 36176 |
| Copyright terms: Public domain | W3C validator |