![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmoprab | Structured version Visualization version GIF version |
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
dmoprab | ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 6980 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | 1 | dmeqi 5572 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = dom {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
3 | dmopab 5582 | . 2 ⊢ dom {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
4 | exrot3 2158 | . . . . 5 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | 19.42v 1996 | . . . . . 6 ⊢ (∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) | |
6 | 5 | 2exbii 1893 | . . . . 5 ⊢ (∃𝑥∃𝑦∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) |
7 | 4, 6 | bitri 267 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)) |
8 | 7 | abbii 2908 | . . 3 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)} |
9 | df-opab 4951 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧𝜑)} | |
10 | 8, 9 | eqtr4i 2805 | . 2 ⊢ {𝑤 ∣ ∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
11 | 2, 3, 10 | 3eqtri 2806 | 1 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1601 ∃wex 1823 {cab 2763 〈cop 4404 {copab 4950 dom cdm 5357 {coprab 6925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-dm 5367 df-oprab 6928 |
This theorem is referenced by: dmoprabss 7021 reldmoprab 7024 fnoprabg 7040 1st2val 7475 2nd2val 7476 joindm 17393 meetdm 17407 dmscut 32511 linedegen 32843 |
Copyright terms: Public domain | W3C validator |