MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmvr Structured version   Visualization version   GIF version

Theorem psdmvr 22105
Description: The partial derivative of a variable is the Kronecker delta if(𝑋 = 𝑌, 1 , 0 ). (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
psdmvr.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmvr.z 0 = (0g𝑆)
psdmvr.o 1 = (1r𝑆)
psdmvr.v 𝑉 = (𝐼 mVar 𝑅)
psdmvr.i (𝜑𝐼𝑊)
psdmvr.r (𝜑𝑅 ∈ Ring)
psdmvr.x (𝜑𝑋𝐼)
psdmvr.y (𝜑𝑌𝐼)
Assertion
Ref Expression
psdmvr (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))

Proof of Theorem psdmvr
Dummy variables 𝑘 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdmvr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2735 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2735 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdmvr.x . . 3 (𝜑𝑋𝐼)
5 psdmvr.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
6 psdmvr.i . . . 4 (𝜑𝐼𝑊)
7 psdmvr.r . . . 4 (𝜑𝑅 ∈ Ring)
8 psdmvr.y . . . 4 (𝜑𝑌𝐼)
91, 5, 2, 6, 7, 8mvrcl2 21945 . . 3 (𝜑 → (𝑉𝑌) ∈ (Base‘𝑆))
101, 2, 3, 4, 9psdval 22095 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
11 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
12 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
136adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑊)
147adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
158adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑌𝐼)
16 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
173psrbagsn 22019 . . . . . . . . . 10 (𝐼𝑊 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
186, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1918adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
203psrbagaddcl 21882 . . . . . . . 8 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2116, 19, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
225, 3, 11, 12, 13, 14, 15, 21mvrval2 21941 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)))
23 1red 11234 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ∈ ℝ)
243psrbagf 21876 . . . . . . . . . . . . . . . 16 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
2524ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑘:𝐼⟶ℕ0)
264ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋𝐼)
2725, 26ffvelcdmd 7074 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → (𝑘𝑋) ∈ ℕ0)
28 nn0addge2 12546 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘𝑋) ∈ ℕ0) → 1 ≤ ((𝑘𝑋) + 1))
2923, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ ((𝑘𝑋) + 1))
30 fveq1 6874 . . . . . . . . . . . . . . 15 ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3130adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3224ffnd 6706 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘 Fn 𝐼)
3332adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 Fn 𝐼)
34 1re 11233 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
35 0re 11235 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
3634, 35ifcli 4548 . . . . . . . . . . . . . . . . . . . 20 if(𝑦 = 𝑋, 1, 0) ∈ ℝ
3736elexi 3482 . . . . . . . . . . . . . . . . . . 19 if(𝑦 = 𝑋, 1, 0) ∈ V
38 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
3937, 38fnmpti 6680 . . . . . . . . . . . . . . . . . 18 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
4039a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
41 inidm 4202 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
42 eqidd 2736 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → (𝑘𝑋) = (𝑘𝑋))
43 iftrue 4506 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
44 1ex 11229 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
4543, 38, 44fvmpt 6985 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4645adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4733, 40, 13, 13, 41, 42, 46ofval 7680 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
484, 47mpidan 689 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
4948adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
50 eqid 2735 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))
51 eqeq1 2739 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝑦 = 𝑌𝑋 = 𝑌))
5251ifbid 4524 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → if(𝑦 = 𝑌, 1, 0) = if(𝑋 = 𝑌, 1, 0))
5334, 35ifcli 4548 . . . . . . . . . . . . . . . . 17 if(𝑋 = 𝑌, 1, 0) ∈ ℝ
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑋 = 𝑌, 1, 0) ∈ ℝ)
5550, 52, 4, 54fvmptd3 7008 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5731, 49, 563eqtr3d 2778 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘𝑋) + 1) = if(𝑋 = 𝑌, 1, 0))
5829, 57breqtrd 5145 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ if(𝑋 = 𝑌, 1, 0))
59 1le1 11863 . . . . . . . . . . . . . 14 1 ≤ 1
60 0le1 11758 . . . . . . . . . . . . . 14 0 ≤ 1
61 anifp 1071 . . . . . . . . . . . . . 14 ((1 ≤ 1 ∧ 0 ≤ 1) → if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6259, 60, 61mp2an 692 . . . . . . . . . . . . 13 if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1)
63 brif1 7502 . . . . . . . . . . . . 13 (if(𝑋 = 𝑌, 1, 0) ≤ 1 ↔ if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6462, 63mpbir 231 . . . . . . . . . . . 12 if(𝑋 = 𝑌, 1, 0) ≤ 1
6534, 53letri3i 11349 . . . . . . . . . . . 12 (1 = if(𝑋 = 𝑌, 1, 0) ↔ (1 ≤ if(𝑋 = 𝑌, 1, 0) ∧ if(𝑋 = 𝑌, 1, 0) ≤ 1))
6658, 64, 65sylanblrc 590 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 = if(𝑋 = 𝑌, 1, 0))
6766eqcomd 2741 . . . . . . . . . 10 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → if(𝑋 = 𝑌, 1, 0) = 1)
68 ax-1ne0 11196 . . . . . . . . . . 11 1 ≠ 0
69 iftrueb 4513 . . . . . . . . . . 11 (1 ≠ 0 → (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌))
7068, 69ax-mp 5 . . . . . . . . . 10 (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌)
7167, 70sylib 218 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋 = 𝑌)
72 eqeq2 2747 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → (𝑦 = 𝑋𝑦 = 𝑌))
7372ifbid 4524 . . . . . . . . . . . . 13 (𝑋 = 𝑌 → if(𝑦 = 𝑋, 1, 0) = if(𝑦 = 𝑌, 1, 0))
7473mpteq2dv 5215 . . . . . . . . . . . 12 (𝑋 = 𝑌 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)))
7574oveq2d 7419 . . . . . . . . . . 11 (𝑋 = 𝑌 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7675eqeq1d 2737 . . . . . . . . . 10 (𝑋 = 𝑌 → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7724adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
78 1nn0 12515 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
79 0nn0 12514 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
8078, 79ifcli 4548 . . . . . . . . . . . . . 14 if(𝑦 = 𝑌, 1, 0) ∈ ℕ0
8180a1i 11 . . . . . . . . . . . . 13 (𝑦𝐼 → if(𝑦 = 𝑌, 1, 0) ∈ ℕ0)
8250, 81fmpti 7101 . . . . . . . . . . . 12 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0
8382a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0)
84 nn0cn 12509 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
85 nn0cn 12509 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
86 addcom 11419 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) = (𝑚 + 𝑛))
8786eqeq1d 2737 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚 ↔ (𝑚 + 𝑛) = 𝑚))
88 addid0 11654 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
8988ancoms 458 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
9087, 89bitrd 279 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9184, 85, 90syl2an 596 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9291adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9313, 77, 83, 92caofidlcan 7707 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9476, 93sylan9bbr 510 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋 = 𝑌) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9571, 94biadanid 822 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))))
9695biancomd 463 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)))
9796ifbid 4524 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9822, 97eqtrd 2770 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9998oveq2d 7419 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))))
100 ovif2 7504 . . . . 5 (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)))
101 fveq1 6874 . . . . . . . . . . 11 (𝑘 = (𝐼 × {0}) → (𝑘𝑋) = ((𝐼 × {0})‘𝑋))
102101oveq1d 7418 . . . . . . . . . 10 (𝑘 = (𝐼 × {0}) → ((𝑘𝑋) + 1) = (((𝐼 × {0})‘𝑋) + 1))
1034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
104 c0ex 11227 . . . . . . . . . . . . . 14 0 ∈ V
105104fvconst2 7195 . . . . . . . . . . . . 13 (𝑋𝐼 → ((𝐼 × {0})‘𝑋) = 0)
106103, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐼 × {0})‘𝑋) = 0)
107106oveq1d 7418 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = (0 + 1))
108 0p1e1 12360 . . . . . . . . . . 11 (0 + 1) = 1
109107, 108eqtrdi 2786 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = 1)
110102, 109sylan9eqr 2792 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 = (𝐼 × {0})) → ((𝑘𝑋) + 1) = 1)
111110adantrr 717 . . . . . . . 8 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → ((𝑘𝑋) + 1) = 1)
112111oveq1d 7418 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1(.g𝑅)(1r𝑅)))
113 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
114113, 12, 7ringidcld 20224 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
115 eqid 2735 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
116113, 115mulg1 19062 . . . . . . . . 9 ((1r𝑅) ∈ (Base‘𝑅) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
117114, 116syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
118117ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
119112, 118eqtrd 2770 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1r𝑅))
1207ringgrpd 20200 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
121120grpmndd 18927 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
122121adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd)
12377, 103ffvelcdmd 7074 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
12478a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 1 ∈ ℕ0)
125123, 124nn0addcld 12564 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
126113, 115, 11mulgnn0z 19082 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑘𝑋) + 1) ∈ ℕ0) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
127122, 125, 126syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
128127adantr 480 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
129119, 128ifeq12da 4534 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
130100, 129eqtrid 2782 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
131 ancom 460 . . . . . . 7 ((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0})))
132 ifbi 4523 . . . . . . 7 (((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)))
133131, 132ax-mp 5 . . . . . 6 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅))
134 ifan 4554 . . . . . 6 if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
135133, 134eqtri 2758 . . . . 5 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
136135a1i 11 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
13799, 130, 1363eqtrd 2774 . . 3 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
138137mpteq2dva 5214 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))))
139 ifmpt2v 7507 . . 3 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
140 psdmvr.o . . . . 5 1 = (1r𝑆)
1411, 6, 7, 3, 11, 12, 140psr1 21929 . . . 4 (𝜑1 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
142 psdmvr.z . . . . . 6 0 = (0g𝑆)
1431, 6, 120, 3, 11, 142psr0 21916 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}))
144 fconstmpt 5716 . . . . 5 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))
145143, 144eqtrdi 2786 . . . 4 (𝜑0 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
146141, 145ifeq12d 4522 . . 3 (𝜑 → if(𝑋 = 𝑌, 1 , 0 ) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))))
147139, 146eqtr4id 2789 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, 1 , 0 ))
14810, 138, 1473eqtrd 2774 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062   = wceq 1540  wcel 2108  wne 2932  {crab 3415  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  ccnv 5653  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  m cmap 8838  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  cle 11268  cn 12238  0cn0 12499  Basecbs 17226  0gc0g 17451  Mndcmnd 18710  .gcmg 19048  1rcur 20139  Ringcrg 20191   mPwSer cmps 21862   mVar cmvr 21863   mPSDer cpsd 22066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-mulg 19049  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-psr 21867  df-mvr 21868  df-psd 22092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator