MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmvr Structured version   Visualization version   GIF version

Theorem psdmvr 22173
Description: The partial derivative of a variable is the Kronecker delta if(𝑋 = 𝑌, 1 , 0 ). (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
psdmvr.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmvr.z 0 = (0g𝑆)
psdmvr.o 1 = (1r𝑆)
psdmvr.v 𝑉 = (𝐼 mVar 𝑅)
psdmvr.i (𝜑𝐼𝑊)
psdmvr.r (𝜑𝑅 ∈ Ring)
psdmvr.x (𝜑𝑋𝐼)
psdmvr.y (𝜑𝑌𝐼)
Assertion
Ref Expression
psdmvr (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))

Proof of Theorem psdmvr
Dummy variables 𝑘 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdmvr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2737 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2737 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdmvr.x . . 3 (𝜑𝑋𝐼)
5 psdmvr.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
6 psdmvr.i . . . 4 (𝜑𝐼𝑊)
7 psdmvr.r . . . 4 (𝜑𝑅 ∈ Ring)
8 psdmvr.y . . . 4 (𝜑𝑌𝐼)
91, 5, 2, 6, 7, 8mvrcl2 22007 . . 3 (𝜑 → (𝑉𝑌) ∈ (Base‘𝑆))
101, 2, 3, 4, 9psdval 22163 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
11 eqid 2737 . . . . . . 7 (0g𝑅) = (0g𝑅)
12 eqid 2737 . . . . . . 7 (1r𝑅) = (1r𝑅)
136adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑊)
147adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
158adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑌𝐼)
16 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
173psrbagsn 22087 . . . . . . . . . 10 (𝐼𝑊 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
186, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1918adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
203psrbagaddcl 21944 . . . . . . . 8 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2116, 19, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
225, 3, 11, 12, 13, 14, 15, 21mvrval2 22003 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)))
23 1red 11262 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ∈ ℝ)
243psrbagf 21938 . . . . . . . . . . . . . . . 16 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
2524ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑘:𝐼⟶ℕ0)
264ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋𝐼)
2725, 26ffvelcdmd 7105 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → (𝑘𝑋) ∈ ℕ0)
28 nn0addge2 12573 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘𝑋) ∈ ℕ0) → 1 ≤ ((𝑘𝑋) + 1))
2923, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ ((𝑘𝑋) + 1))
30 fveq1 6905 . . . . . . . . . . . . . . 15 ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3130adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3224ffnd 6737 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘 Fn 𝐼)
3332adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 Fn 𝐼)
34 1re 11261 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
35 0re 11263 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
3634, 35ifcli 4573 . . . . . . . . . . . . . . . . . . . 20 if(𝑦 = 𝑋, 1, 0) ∈ ℝ
3736elexi 3503 . . . . . . . . . . . . . . . . . . 19 if(𝑦 = 𝑋, 1, 0) ∈ V
38 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
3937, 38fnmpti 6711 . . . . . . . . . . . . . . . . . 18 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
4039a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
41 inidm 4227 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
42 eqidd 2738 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → (𝑘𝑋) = (𝑘𝑋))
43 iftrue 4531 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
44 1ex 11257 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
4543, 38, 44fvmpt 7016 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4645adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4733, 40, 13, 13, 41, 42, 46ofval 7708 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
484, 47mpidan 689 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
4948adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
50 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))
51 eqeq1 2741 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝑦 = 𝑌𝑋 = 𝑌))
5251ifbid 4549 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → if(𝑦 = 𝑌, 1, 0) = if(𝑋 = 𝑌, 1, 0))
5334, 35ifcli 4573 . . . . . . . . . . . . . . . . 17 if(𝑋 = 𝑌, 1, 0) ∈ ℝ
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑋 = 𝑌, 1, 0) ∈ ℝ)
5550, 52, 4, 54fvmptd3 7039 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5731, 49, 563eqtr3d 2785 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘𝑋) + 1) = if(𝑋 = 𝑌, 1, 0))
5829, 57breqtrd 5169 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ if(𝑋 = 𝑌, 1, 0))
59 1le1 11891 . . . . . . . . . . . . . 14 1 ≤ 1
60 0le1 11786 . . . . . . . . . . . . . 14 0 ≤ 1
61 anifp 1072 . . . . . . . . . . . . . 14 ((1 ≤ 1 ∧ 0 ≤ 1) → if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6259, 60, 61mp2an 692 . . . . . . . . . . . . 13 if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1)
63 brif1 7530 . . . . . . . . . . . . 13 (if(𝑋 = 𝑌, 1, 0) ≤ 1 ↔ if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6462, 63mpbir 231 . . . . . . . . . . . 12 if(𝑋 = 𝑌, 1, 0) ≤ 1
6534, 53letri3i 11377 . . . . . . . . . . . 12 (1 = if(𝑋 = 𝑌, 1, 0) ↔ (1 ≤ if(𝑋 = 𝑌, 1, 0) ∧ if(𝑋 = 𝑌, 1, 0) ≤ 1))
6658, 64, 65sylanblrc 590 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 = if(𝑋 = 𝑌, 1, 0))
6766eqcomd 2743 . . . . . . . . . 10 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → if(𝑋 = 𝑌, 1, 0) = 1)
68 ax-1ne0 11224 . . . . . . . . . . 11 1 ≠ 0
69 iftrueb 4538 . . . . . . . . . . 11 (1 ≠ 0 → (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌))
7068, 69ax-mp 5 . . . . . . . . . 10 (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌)
7167, 70sylib 218 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋 = 𝑌)
72 eqeq2 2749 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → (𝑦 = 𝑋𝑦 = 𝑌))
7372ifbid 4549 . . . . . . . . . . . . 13 (𝑋 = 𝑌 → if(𝑦 = 𝑋, 1, 0) = if(𝑦 = 𝑌, 1, 0))
7473mpteq2dv 5244 . . . . . . . . . . . 12 (𝑋 = 𝑌 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)))
7574oveq2d 7447 . . . . . . . . . . 11 (𝑋 = 𝑌 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7675eqeq1d 2739 . . . . . . . . . 10 (𝑋 = 𝑌 → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7724adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
78 1nn0 12542 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
79 0nn0 12541 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
8078, 79ifcli 4573 . . . . . . . . . . . . . 14 if(𝑦 = 𝑌, 1, 0) ∈ ℕ0
8180a1i 11 . . . . . . . . . . . . 13 (𝑦𝐼 → if(𝑦 = 𝑌, 1, 0) ∈ ℕ0)
8250, 81fmpti 7132 . . . . . . . . . . . 12 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0
8382a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0)
84 nn0cn 12536 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
85 nn0cn 12536 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
86 addcom 11447 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) = (𝑚 + 𝑛))
8786eqeq1d 2739 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚 ↔ (𝑚 + 𝑛) = 𝑚))
88 addid0 11682 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
8988ancoms 458 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
9087, 89bitrd 279 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9184, 85, 90syl2an 596 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9291adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9313, 77, 83, 92caofidlcan 7735 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9476, 93sylan9bbr 510 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋 = 𝑌) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9571, 94biadanid 823 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))))
9695biancomd 463 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)))
9796ifbid 4549 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9822, 97eqtrd 2777 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9998oveq2d 7447 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))))
100 ovif2 7532 . . . . 5 (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)))
101 fveq1 6905 . . . . . . . . . . 11 (𝑘 = (𝐼 × {0}) → (𝑘𝑋) = ((𝐼 × {0})‘𝑋))
102101oveq1d 7446 . . . . . . . . . 10 (𝑘 = (𝐼 × {0}) → ((𝑘𝑋) + 1) = (((𝐼 × {0})‘𝑋) + 1))
1034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
104 c0ex 11255 . . . . . . . . . . . . . 14 0 ∈ V
105104fvconst2 7224 . . . . . . . . . . . . 13 (𝑋𝐼 → ((𝐼 × {0})‘𝑋) = 0)
106103, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐼 × {0})‘𝑋) = 0)
107106oveq1d 7446 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = (0 + 1))
108 0p1e1 12388 . . . . . . . . . . 11 (0 + 1) = 1
109107, 108eqtrdi 2793 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = 1)
110102, 109sylan9eqr 2799 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 = (𝐼 × {0})) → ((𝑘𝑋) + 1) = 1)
111110adantrr 717 . . . . . . . 8 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → ((𝑘𝑋) + 1) = 1)
112111oveq1d 7446 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1(.g𝑅)(1r𝑅)))
113 eqid 2737 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
114113, 12, 7ringidcld 20263 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
115 eqid 2737 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
116113, 115mulg1 19099 . . . . . . . . 9 ((1r𝑅) ∈ (Base‘𝑅) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
117114, 116syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
118117ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
119112, 118eqtrd 2777 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1r𝑅))
1207ringgrpd 20239 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
121120grpmndd 18964 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
122121adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd)
12377, 103ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
12478a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 1 ∈ ℕ0)
125123, 124nn0addcld 12591 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
126113, 115, 11mulgnn0z 19119 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑘𝑋) + 1) ∈ ℕ0) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
127122, 125, 126syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
128127adantr 480 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
129119, 128ifeq12da 4559 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
130100, 129eqtrid 2789 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
131 ancom 460 . . . . . . 7 ((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0})))
132 ifbi 4548 . . . . . . 7 (((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)))
133131, 132ax-mp 5 . . . . . 6 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅))
134 ifan 4579 . . . . . 6 if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
135133, 134eqtri 2765 . . . . 5 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
136135a1i 11 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
13799, 130, 1363eqtrd 2781 . . 3 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
138137mpteq2dva 5242 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))))
139 ifmpt2v 7535 . . 3 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
140 psdmvr.o . . . . 5 1 = (1r𝑆)
1411, 6, 7, 3, 11, 12, 140psr1 21991 . . . 4 (𝜑1 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
142 psdmvr.z . . . . . 6 0 = (0g𝑆)
1431, 6, 120, 3, 11, 142psr0 21978 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}))
144 fconstmpt 5747 . . . . 5 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))
145143, 144eqtrdi 2793 . . . 4 (𝜑0 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
146141, 145ifeq12d 4547 . . 3 (𝜑 → if(𝑋 = 𝑌, 1 , 0 ) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))))
147139, 146eqtr4id 2796 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, 1 , 0 ))
14810, 138, 1473eqtrd 2781 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1063   = wceq 1540  wcel 2108  wne 2940  {crab 3436  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  m cmap 8866  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  cle 11296  cn 12266  0cn0 12526  Basecbs 17247  0gc0g 17484  Mndcmnd 18747  .gcmg 19085  1rcur 20178  Ringcrg 20230   mPwSer cmps 21924   mVar cmvr 21925   mPSDer cpsd 22134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-psr 21929  df-mvr 21930  df-psd 22160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator