MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmvr Structured version   Visualization version   GIF version

Theorem psdmvr 22089
Description: The partial derivative of a variable is the Kronecker delta if(𝑋 = 𝑌, 1 , 0 ). (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
psdmvr.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmvr.z 0 = (0g𝑆)
psdmvr.o 1 = (1r𝑆)
psdmvr.v 𝑉 = (𝐼 mVar 𝑅)
psdmvr.i (𝜑𝐼𝑊)
psdmvr.r (𝜑𝑅 ∈ Ring)
psdmvr.x (𝜑𝑋𝐼)
psdmvr.y (𝜑𝑌𝐼)
Assertion
Ref Expression
psdmvr (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))

Proof of Theorem psdmvr
Dummy variables 𝑘 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdmvr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2729 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdmvr.x . . 3 (𝜑𝑋𝐼)
5 psdmvr.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
6 psdmvr.i . . . 4 (𝜑𝐼𝑊)
7 psdmvr.r . . . 4 (𝜑𝑅 ∈ Ring)
8 psdmvr.y . . . 4 (𝜑𝑌𝐼)
91, 5, 2, 6, 7, 8mvrcl2 21929 . . 3 (𝜑 → (𝑉𝑌) ∈ (Base‘𝑆))
101, 2, 3, 4, 9psdval 22079 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
11 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
12 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
136adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑊)
147adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
158adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑌𝐼)
16 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
173psrbagsn 22003 . . . . . . . . . 10 (𝐼𝑊 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
186, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1918adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
203psrbagaddcl 21866 . . . . . . . 8 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2116, 19, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
225, 3, 11, 12, 13, 14, 15, 21mvrval2 21925 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)))
23 1red 11151 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ∈ ℝ)
243psrbagf 21860 . . . . . . . . . . . . . . . 16 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
2524ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑘:𝐼⟶ℕ0)
264ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋𝐼)
2725, 26ffvelcdmd 7039 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → (𝑘𝑋) ∈ ℕ0)
28 nn0addge2 12465 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘𝑋) ∈ ℕ0) → 1 ≤ ((𝑘𝑋) + 1))
2923, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ ((𝑘𝑋) + 1))
30 fveq1 6839 . . . . . . . . . . . . . . 15 ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3130adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3224ffnd 6671 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘 Fn 𝐼)
3332adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 Fn 𝐼)
34 1re 11150 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
35 0re 11152 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
3634, 35ifcli 4532 . . . . . . . . . . . . . . . . . . . 20 if(𝑦 = 𝑋, 1, 0) ∈ ℝ
3736elexi 3467 . . . . . . . . . . . . . . . . . . 19 if(𝑦 = 𝑋, 1, 0) ∈ V
38 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
3937, 38fnmpti 6643 . . . . . . . . . . . . . . . . . 18 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
4039a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
41 inidm 4186 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
42 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → (𝑘𝑋) = (𝑘𝑋))
43 iftrue 4490 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
44 1ex 11146 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
4543, 38, 44fvmpt 6950 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4645adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4733, 40, 13, 13, 41, 42, 46ofval 7644 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
484, 47mpidan 689 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
4948adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
50 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))
51 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝑦 = 𝑌𝑋 = 𝑌))
5251ifbid 4508 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → if(𝑦 = 𝑌, 1, 0) = if(𝑋 = 𝑌, 1, 0))
5334, 35ifcli 4532 . . . . . . . . . . . . . . . . 17 if(𝑋 = 𝑌, 1, 0) ∈ ℝ
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑋 = 𝑌, 1, 0) ∈ ℝ)
5550, 52, 4, 54fvmptd3 6973 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5731, 49, 563eqtr3d 2772 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘𝑋) + 1) = if(𝑋 = 𝑌, 1, 0))
5829, 57breqtrd 5128 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ if(𝑋 = 𝑌, 1, 0))
59 1le1 11782 . . . . . . . . . . . . . 14 1 ≤ 1
60 0le1 11677 . . . . . . . . . . . . . 14 0 ≤ 1
61 anifp 1071 . . . . . . . . . . . . . 14 ((1 ≤ 1 ∧ 0 ≤ 1) → if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6259, 60, 61mp2an 692 . . . . . . . . . . . . 13 if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1)
63 brif1 7466 . . . . . . . . . . . . 13 (if(𝑋 = 𝑌, 1, 0) ≤ 1 ↔ if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6462, 63mpbir 231 . . . . . . . . . . . 12 if(𝑋 = 𝑌, 1, 0) ≤ 1
6534, 53letri3i 11266 . . . . . . . . . . . 12 (1 = if(𝑋 = 𝑌, 1, 0) ↔ (1 ≤ if(𝑋 = 𝑌, 1, 0) ∧ if(𝑋 = 𝑌, 1, 0) ≤ 1))
6658, 64, 65sylanblrc 590 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 = if(𝑋 = 𝑌, 1, 0))
6766eqcomd 2735 . . . . . . . . . 10 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → if(𝑋 = 𝑌, 1, 0) = 1)
68 ax-1ne0 11113 . . . . . . . . . . 11 1 ≠ 0
69 iftrueb 4497 . . . . . . . . . . 11 (1 ≠ 0 → (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌))
7068, 69ax-mp 5 . . . . . . . . . 10 (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌)
7167, 70sylib 218 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋 = 𝑌)
72 eqeq2 2741 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → (𝑦 = 𝑋𝑦 = 𝑌))
7372ifbid 4508 . . . . . . . . . . . . 13 (𝑋 = 𝑌 → if(𝑦 = 𝑋, 1, 0) = if(𝑦 = 𝑌, 1, 0))
7473mpteq2dv 5196 . . . . . . . . . . . 12 (𝑋 = 𝑌 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)))
7574oveq2d 7385 . . . . . . . . . . 11 (𝑋 = 𝑌 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7675eqeq1d 2731 . . . . . . . . . 10 (𝑋 = 𝑌 → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7724adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
78 1nn0 12434 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
79 0nn0 12433 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
8078, 79ifcli 4532 . . . . . . . . . . . . . 14 if(𝑦 = 𝑌, 1, 0) ∈ ℕ0
8180a1i 11 . . . . . . . . . . . . 13 (𝑦𝐼 → if(𝑦 = 𝑌, 1, 0) ∈ ℕ0)
8250, 81fmpti 7066 . . . . . . . . . . . 12 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0
8382a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0)
84 nn0cn 12428 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
85 nn0cn 12428 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
86 addcom 11336 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) = (𝑚 + 𝑛))
8786eqeq1d 2731 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚 ↔ (𝑚 + 𝑛) = 𝑚))
88 addid0 11573 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
8988ancoms 458 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
9087, 89bitrd 279 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9184, 85, 90syl2an 596 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9291adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9313, 77, 83, 92caofidlcan 7671 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9476, 93sylan9bbr 510 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋 = 𝑌) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9571, 94biadanid 822 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))))
9695biancomd 463 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)))
9796ifbid 4508 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9822, 97eqtrd 2764 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9998oveq2d 7385 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))))
100 ovif2 7468 . . . . 5 (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)))
101 fveq1 6839 . . . . . . . . . . 11 (𝑘 = (𝐼 × {0}) → (𝑘𝑋) = ((𝐼 × {0})‘𝑋))
102101oveq1d 7384 . . . . . . . . . 10 (𝑘 = (𝐼 × {0}) → ((𝑘𝑋) + 1) = (((𝐼 × {0})‘𝑋) + 1))
1034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
104 c0ex 11144 . . . . . . . . . . . . . 14 0 ∈ V
105104fvconst2 7160 . . . . . . . . . . . . 13 (𝑋𝐼 → ((𝐼 × {0})‘𝑋) = 0)
106103, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐼 × {0})‘𝑋) = 0)
107106oveq1d 7384 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = (0 + 1))
108 0p1e1 12279 . . . . . . . . . . 11 (0 + 1) = 1
109107, 108eqtrdi 2780 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = 1)
110102, 109sylan9eqr 2786 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 = (𝐼 × {0})) → ((𝑘𝑋) + 1) = 1)
111110adantrr 717 . . . . . . . 8 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → ((𝑘𝑋) + 1) = 1)
112111oveq1d 7384 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1(.g𝑅)(1r𝑅)))
113 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
114113, 12, 7ringidcld 20186 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
115 eqid 2729 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
116113, 115mulg1 18995 . . . . . . . . 9 ((1r𝑅) ∈ (Base‘𝑅) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
117114, 116syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
118117ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
119112, 118eqtrd 2764 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1r𝑅))
1207ringgrpd 20162 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
121120grpmndd 18860 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
122121adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd)
12377, 103ffvelcdmd 7039 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
12478a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 1 ∈ ℕ0)
125123, 124nn0addcld 12483 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
126113, 115, 11mulgnn0z 19015 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑘𝑋) + 1) ∈ ℕ0) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
127122, 125, 126syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
128127adantr 480 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
129119, 128ifeq12da 4518 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
130100, 129eqtrid 2776 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
131 ancom 460 . . . . . . 7 ((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0})))
132 ifbi 4507 . . . . . . 7 (((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)))
133131, 132ax-mp 5 . . . . . 6 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅))
134 ifan 4538 . . . . . 6 if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
135133, 134eqtri 2752 . . . . 5 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
136135a1i 11 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
13799, 130, 1363eqtrd 2768 . . 3 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
138137mpteq2dva 5195 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))))
139 ifmpt2v 7471 . . 3 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
140 psdmvr.o . . . . 5 1 = (1r𝑆)
1411, 6, 7, 3, 11, 12, 140psr1 21913 . . . 4 (𝜑1 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
142 psdmvr.z . . . . . 6 0 = (0g𝑆)
1431, 6, 120, 3, 11, 142psr0 21900 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}))
144 fconstmpt 5693 . . . . 5 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))
145143, 144eqtrdi 2780 . . . 4 (𝜑0 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
146141, 145ifeq12d 4506 . . 3 (𝜑 → if(𝑋 = 𝑌, 1 , 0 ) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))))
147139, 146eqtr4id 2783 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, 1 , 0 ))
14810, 138, 1473eqtrd 2768 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062   = wceq 1540  wcel 2109  wne 2925  {crab 3402  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  cle 11185  cn 12162  0cn0 12418  Basecbs 17155  0gc0g 17378  Mndcmnd 18643  .gcmg 18981  1rcur 20101  Ringcrg 20153   mPwSer cmps 21846   mVar cmvr 21847   mPSDer cpsd 22050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-mulg 18982  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-psr 21851  df-mvr 21852  df-psd 22076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator