| Step | Hyp | Ref
| Expression |
| 1 | | psdmvr.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2737 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | eqid 2737 |
. . 3
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 4 | | psdmvr.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 5 | | psdmvr.v |
. . . 4
⊢ 𝑉 = (𝐼 mVar 𝑅) |
| 6 | | psdmvr.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 7 | | psdmvr.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | | psdmvr.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐼) |
| 9 | 1, 5, 2, 6, 7, 8 | mvrcl2 22007 |
. . 3
⊢ (𝜑 → (𝑉‘𝑌) ∈ (Base‘𝑆)) |
| 10 | 1, 2, 3, 4, 9 | psdval 22163 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉‘𝑌)) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)((𝑉‘𝑌)‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 11 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 12 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 13 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑊) |
| 14 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
| 15 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑌 ∈ 𝐼) |
| 16 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 17 | 3 | psrbagsn 22087 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑊 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 18 | 6, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 19 | 18 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 20 | 3 | psrbagaddcl 21944 |
. . . . . . . 8
⊢ ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 21 | 16, 19, 20 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 22 | 5, 3, 11, 12, 13, 14, 15, 21 | mvrval2 22003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑉‘𝑌)‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r‘𝑅), (0g‘𝑅))) |
| 23 | | 1red 11262 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ∈
ℝ) |
| 24 | 3 | psrbagf 21938 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) |
| 25 | 24 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑘:𝐼⟶ℕ0) |
| 26 | 4 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋 ∈ 𝐼) |
| 27 | 25, 26 | ffvelcdmd 7105 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → (𝑘‘𝑋) ∈
ℕ0) |
| 28 | | nn0addge2 12573 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ (𝑘‘𝑋) ∈ ℕ0) → 1 ≤
((𝑘‘𝑋) + 1)) |
| 29 | 23, 27, 28 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ ((𝑘‘𝑋) + 1)) |
| 30 | | fveq1 6905 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋)) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋)) |
| 32 | 24 | ffnd 6737 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘 Fn 𝐼) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘 Fn 𝐼) |
| 34 | | 1re 11261 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℝ |
| 35 | | 0re 11263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℝ |
| 36 | 34, 35 | ifcli 4573 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(𝑦 = 𝑋, 1, 0) ∈ ℝ |
| 37 | 36 | elexi 3503 |
. . . . . . . . . . . . . . . . . . 19
⊢ if(𝑦 = 𝑋, 1, 0) ∈ V |
| 38 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
| 39 | 37, 38 | fnmpti 6711 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼 |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 41 | | inidm 4227 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 42 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑋 ∈ 𝐼) → (𝑘‘𝑋) = (𝑘‘𝑋)) |
| 43 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1) |
| 44 | | 1ex 11257 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
V |
| 45 | 43, 38, 44 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
| 46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑋 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
| 47 | 33, 40, 13, 13, 41, 42, 46 | ofval 7708 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑋 ∈ 𝐼) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘‘𝑋) + 1)) |
| 48 | 4, 47 | mpidan 689 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘‘𝑋) + 1)) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘‘𝑋) + 1)) |
| 50 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) |
| 51 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑋 → (𝑦 = 𝑌 ↔ 𝑋 = 𝑌)) |
| 52 | 51 | ifbid 4549 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑌, 1, 0) = if(𝑋 = 𝑌, 1, 0)) |
| 53 | 34, 35 | ifcli 4573 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑋 = 𝑌, 1, 0) ∈ ℝ |
| 54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑋 = 𝑌, 1, 0) ∈ ℝ) |
| 55 | 50, 52, 4, 54 | fvmptd3 7039 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0)) |
| 56 | 55 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0)) |
| 57 | 31, 49, 56 | 3eqtr3d 2785 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘‘𝑋) + 1) = if(𝑋 = 𝑌, 1, 0)) |
| 58 | 29, 57 | breqtrd 5169 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ if(𝑋 = 𝑌, 1, 0)) |
| 59 | | 1le1 11891 |
. . . . . . . . . . . . . 14
⊢ 1 ≤
1 |
| 60 | | 0le1 11786 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
1 |
| 61 | | anifp 1072 |
. . . . . . . . . . . . . 14
⊢ ((1 ≤
1 ∧ 0 ≤ 1) → if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1)) |
| 62 | 59, 60, 61 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1) |
| 63 | | brif1 7530 |
. . . . . . . . . . . . 13
⊢ (if(𝑋 = 𝑌, 1, 0) ≤ 1 ↔ if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1)) |
| 64 | 62, 63 | mpbir 231 |
. . . . . . . . . . . 12
⊢ if(𝑋 = 𝑌, 1, 0) ≤ 1 |
| 65 | 34, 53 | letri3i 11377 |
. . . . . . . . . . . 12
⊢ (1 =
if(𝑋 = 𝑌, 1, 0) ↔ (1 ≤ if(𝑋 = 𝑌, 1, 0) ∧ if(𝑋 = 𝑌, 1, 0) ≤ 1)) |
| 66 | 58, 64, 65 | sylanblrc 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 = if(𝑋 = 𝑌, 1, 0)) |
| 67 | 66 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → if(𝑋 = 𝑌, 1, 0) = 1) |
| 68 | | ax-1ne0 11224 |
. . . . . . . . . . 11
⊢ 1 ≠
0 |
| 69 | | iftrueb 4538 |
. . . . . . . . . . 11
⊢ (1 ≠ 0
→ (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌)) |
| 70 | 68, 69 | ax-mp 5 |
. . . . . . . . . 10
⊢ (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌) |
| 71 | 67, 70 | sylib 218 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋 = 𝑌) |
| 72 | | eqeq2 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 𝑌 → (𝑦 = 𝑋 ↔ 𝑦 = 𝑌)) |
| 73 | 72 | ifbid 4549 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 𝑌 → if(𝑦 = 𝑋, 1, 0) = if(𝑦 = 𝑌, 1, 0)) |
| 74 | 73 | mpteq2dv 5244 |
. . . . . . . . . . . 12
⊢ (𝑋 = 𝑌 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) |
| 75 | 74 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑋 = 𝑌 → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)))) |
| 76 | 75 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑋 = 𝑌 → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)))) |
| 77 | 24 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
| 78 | | 1nn0 12542 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℕ0 |
| 79 | | 0nn0 12541 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℕ0 |
| 80 | 78, 79 | ifcli 4573 |
. . . . . . . . . . . . . 14
⊢ if(𝑦 = 𝑌, 1, 0) ∈
ℕ0 |
| 81 | 80 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐼 → if(𝑦 = 𝑌, 1, 0) ∈
ℕ0) |
| 82 | 50, 81 | fmpti 7132 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0 |
| 83 | 82 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0) |
| 84 | | nn0cn 12536 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
| 85 | | nn0cn 12536 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
| 86 | | addcom 11447 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) = (𝑚 + 𝑛)) |
| 87 | 86 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚 ↔ (𝑚 + 𝑛) = 𝑚)) |
| 88 | | addid0 11682 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚 ↔ 𝑛 = 0)) |
| 89 | 88 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚 ↔ 𝑛 = 0)) |
| 90 | 87, 89 | bitrd 279 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚 ↔ 𝑛 = 0)) |
| 91 | 84, 85, 90 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((𝑛 + 𝑚) = 𝑚 ↔ 𝑛 = 0)) |
| 92 | 91 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0)) → ((𝑛 + 𝑚) = 𝑚 ↔ 𝑛 = 0)) |
| 93 | 13, 77, 83, 92 | caofidlcan 7735 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0}))) |
| 94 | 76, 93 | sylan9bbr 510 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑋 = 𝑌) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0}))) |
| 95 | 71, 94 | biadanid 823 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑋 = 𝑌 ∧ 𝑘 = (𝐼 × {0})))) |
| 96 | 95 | biancomd 463 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌))) |
| 97 | 96 | ifbid 4549 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
if((𝑘 ∘f +
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅))) |
| 98 | 22, 97 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑉‘𝑌)‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅))) |
| 99 | 98 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑘‘𝑋) + 1)(.g‘𝑅)((𝑉‘𝑌)‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅)))) |
| 100 | | ovif2 7532 |
. . . . 5
⊢ (((𝑘‘𝑋) + 1)(.g‘𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘‘𝑋) + 1)(.g‘𝑅)(1r‘𝑅)), (((𝑘‘𝑋) + 1)(.g‘𝑅)(0g‘𝑅))) |
| 101 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐼 × {0}) → (𝑘‘𝑋) = ((𝐼 × {0})‘𝑋)) |
| 102 | 101 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐼 × {0}) → ((𝑘‘𝑋) + 1) = (((𝐼 × {0})‘𝑋) + 1)) |
| 103 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
| 104 | | c0ex 11255 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 105 | 104 | fvconst2 7224 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐼 → ((𝐼 × {0})‘𝑋) = 0) |
| 106 | 103, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐼 × {0})‘𝑋) = 0) |
| 107 | 106 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = (0 +
1)) |
| 108 | | 0p1e1 12388 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
| 109 | 107, 108 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = 1) |
| 110 | 102, 109 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 = (𝐼 × {0})) → ((𝑘‘𝑋) + 1) = 1) |
| 111 | 110 | adantrr 717 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → ((𝑘‘𝑋) + 1) = 1) |
| 112 | 111 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(1r‘𝑅)) = (1(.g‘𝑅)(1r‘𝑅))) |
| 113 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 114 | 113, 12, 7 | ringidcld 20263 |
. . . . . . . . 9
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 115 | | eqid 2737 |
. . . . . . . . . 10
⊢
(.g‘𝑅) = (.g‘𝑅) |
| 116 | 113, 115 | mulg1 19099 |
. . . . . . . . 9
⊢
((1r‘𝑅) ∈ (Base‘𝑅) → (1(.g‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
| 117 | 114, 116 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(1(.g‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
| 118 | 117 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (1(.g‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
| 119 | 112, 118 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
| 120 | 7 | ringgrpd 20239 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 121 | 120 | grpmndd 18964 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 122 | 121 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd) |
| 123 | 77, 103 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘‘𝑋) ∈
ℕ0) |
| 124 | 78 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 1 ∈
ℕ0) |
| 125 | 123, 124 | nn0addcld 12591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘‘𝑋) + 1) ∈
ℕ0) |
| 126 | 113, 115,
11 | mulgnn0z 19119 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ ((𝑘‘𝑋) + 1) ∈ ℕ0) →
(((𝑘‘𝑋) + 1)(.g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 127 | 122, 125,
126 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 128 | 127 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ ¬
(𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 129 | 119, 128 | ifeq12da 4559 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘‘𝑋) + 1)(.g‘𝑅)(1r‘𝑅)), (((𝑘‘𝑋) + 1)(.g‘𝑅)(0g‘𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅))) |
| 130 | 100, 129 | eqtrid 2789 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑘‘𝑋) + 1)(.g‘𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅))) |
| 131 | | ancom 460 |
. . . . . . 7
⊢ ((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌 ∧ 𝑘 = (𝐼 × {0}))) |
| 132 | | ifbi 4548 |
. . . . . . 7
⊢ (((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌 ∧ 𝑘 = (𝐼 × {0}))) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅)) = if((𝑋 = 𝑌 ∧ 𝑘 = (𝐼 × {0})), (1r‘𝑅), (0g‘𝑅))) |
| 133 | 131, 132 | ax-mp 5 |
. . . . . 6
⊢ if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅)) = if((𝑋 = 𝑌 ∧ 𝑘 = (𝐼 × {0})), (1r‘𝑅), (0g‘𝑅)) |
| 134 | | ifan 4579 |
. . . . . 6
⊢ if((𝑋 = 𝑌 ∧ 𝑘 = (𝐼 × {0})), (1r‘𝑅), (0g‘𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)) |
| 135 | 133, 134 | eqtri 2765 |
. . . . 5
⊢ if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)) |
| 136 | 135 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r‘𝑅), (0g‘𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) |
| 137 | 99, 130, 136 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑘‘𝑋) + 1)(.g‘𝑅)((𝑉‘𝑌)‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) |
| 138 | 137 | mpteq2dva 5242 |
. 2
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)((𝑉‘𝑌)‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)))) |
| 139 | | ifmpt2v 7535 |
. . 3
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) = if(𝑋 = 𝑌, (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))), (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(0g‘𝑅))) |
| 140 | | psdmvr.o |
. . . . 5
⊢ 1 =
(1r‘𝑆) |
| 141 | 1, 6, 7, 3, 11, 12, 140 | psr1 21991 |
. . . 4
⊢ (𝜑 → 1 = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 142 | | psdmvr.z |
. . . . . 6
⊢ 0 =
(0g‘𝑆) |
| 143 | 1, 6, 120, 3, 11, 142 | psr0 21978 |
. . . . 5
⊢ (𝜑 → 0 = ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
| 144 | | fconstmpt 5747 |
. . . . 5
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})
= (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(0g‘𝑅)) |
| 145 | 143, 144 | eqtrdi 2793 |
. . . 4
⊢ (𝜑 → 0 = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(0g‘𝑅))) |
| 146 | 141, 145 | ifeq12d 4547 |
. . 3
⊢ (𝜑 → if(𝑋 = 𝑌, 1 , 0 ) = if(𝑋 = 𝑌, (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))), (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(0g‘𝑅)))) |
| 147 | 139, 146 | eqtr4id 2796 |
. 2
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) = if(𝑋 = 𝑌, 1 , 0 )) |
| 148 | 10, 138, 147 | 3eqtrd 2781 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉‘𝑌)) = if(𝑋 = 𝑌, 1 , 0 )) |