MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmvr Structured version   Visualization version   GIF version

Theorem psdmvr 22084
Description: The partial derivative of a variable is the Kronecker delta if(𝑋 = 𝑌, 1 , 0 ). (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
psdmvr.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmvr.z 0 = (0g𝑆)
psdmvr.o 1 = (1r𝑆)
psdmvr.v 𝑉 = (𝐼 mVar 𝑅)
psdmvr.i (𝜑𝐼𝑊)
psdmvr.r (𝜑𝑅 ∈ Ring)
psdmvr.x (𝜑𝑋𝐼)
psdmvr.y (𝜑𝑌𝐼)
Assertion
Ref Expression
psdmvr (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))

Proof of Theorem psdmvr
Dummy variables 𝑘 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdmvr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2731 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2731 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdmvr.x . . 3 (𝜑𝑋𝐼)
5 psdmvr.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
6 psdmvr.i . . . 4 (𝜑𝐼𝑊)
7 psdmvr.r . . . 4 (𝜑𝑅 ∈ Ring)
8 psdmvr.y . . . 4 (𝜑𝑌𝐼)
91, 5, 2, 6, 7, 8mvrcl2 21924 . . 3 (𝜑 → (𝑉𝑌) ∈ (Base‘𝑆))
101, 2, 3, 4, 9psdval 22074 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
11 eqid 2731 . . . . . . 7 (0g𝑅) = (0g𝑅)
12 eqid 2731 . . . . . . 7 (1r𝑅) = (1r𝑅)
136adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑊)
147adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
158adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑌𝐼)
16 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
173psrbagsn 21998 . . . . . . . . . 10 (𝐼𝑊 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
186, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1918adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
203psrbagaddcl 21861 . . . . . . . 8 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2116, 19, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
225, 3, 11, 12, 13, 14, 15, 21mvrval2 21920 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)))
23 1red 11113 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ∈ ℝ)
243psrbagf 21855 . . . . . . . . . . . . . . . 16 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
2524ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑘:𝐼⟶ℕ0)
264ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋𝐼)
2725, 26ffvelcdmd 7018 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → (𝑘𝑋) ∈ ℕ0)
28 nn0addge2 12428 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘𝑋) ∈ ℕ0) → 1 ≤ ((𝑘𝑋) + 1))
2923, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ ((𝑘𝑋) + 1))
30 fveq1 6821 . . . . . . . . . . . . . . 15 ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3130adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3224ffnd 6652 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘 Fn 𝐼)
3332adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 Fn 𝐼)
34 1re 11112 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
35 0re 11114 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
3634, 35ifcli 4520 . . . . . . . . . . . . . . . . . . . 20 if(𝑦 = 𝑋, 1, 0) ∈ ℝ
3736elexi 3459 . . . . . . . . . . . . . . . . . . 19 if(𝑦 = 𝑋, 1, 0) ∈ V
38 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
3937, 38fnmpti 6624 . . . . . . . . . . . . . . . . . 18 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
4039a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
41 inidm 4174 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
42 eqidd 2732 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → (𝑘𝑋) = (𝑘𝑋))
43 iftrue 4478 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
44 1ex 11108 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
4543, 38, 44fvmpt 6929 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4645adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4733, 40, 13, 13, 41, 42, 46ofval 7621 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
484, 47mpidan 689 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
4948adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
50 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))
51 eqeq1 2735 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝑦 = 𝑌𝑋 = 𝑌))
5251ifbid 4496 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → if(𝑦 = 𝑌, 1, 0) = if(𝑋 = 𝑌, 1, 0))
5334, 35ifcli 4520 . . . . . . . . . . . . . . . . 17 if(𝑋 = 𝑌, 1, 0) ∈ ℝ
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑋 = 𝑌, 1, 0) ∈ ℝ)
5550, 52, 4, 54fvmptd3 6952 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5731, 49, 563eqtr3d 2774 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘𝑋) + 1) = if(𝑋 = 𝑌, 1, 0))
5829, 57breqtrd 5115 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ if(𝑋 = 𝑌, 1, 0))
59 1le1 11745 . . . . . . . . . . . . . 14 1 ≤ 1
60 0le1 11640 . . . . . . . . . . . . . 14 0 ≤ 1
61 anifp 1071 . . . . . . . . . . . . . 14 ((1 ≤ 1 ∧ 0 ≤ 1) → if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6259, 60, 61mp2an 692 . . . . . . . . . . . . 13 if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1)
63 brif1 7443 . . . . . . . . . . . . 13 (if(𝑋 = 𝑌, 1, 0) ≤ 1 ↔ if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6462, 63mpbir 231 . . . . . . . . . . . 12 if(𝑋 = 𝑌, 1, 0) ≤ 1
6534, 53letri3i 11229 . . . . . . . . . . . 12 (1 = if(𝑋 = 𝑌, 1, 0) ↔ (1 ≤ if(𝑋 = 𝑌, 1, 0) ∧ if(𝑋 = 𝑌, 1, 0) ≤ 1))
6658, 64, 65sylanblrc 590 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 = if(𝑋 = 𝑌, 1, 0))
6766eqcomd 2737 . . . . . . . . . 10 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → if(𝑋 = 𝑌, 1, 0) = 1)
68 ax-1ne0 11075 . . . . . . . . . . 11 1 ≠ 0
69 iftrueb 4485 . . . . . . . . . . 11 (1 ≠ 0 → (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌))
7068, 69ax-mp 5 . . . . . . . . . 10 (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌)
7167, 70sylib 218 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋 = 𝑌)
72 eqeq2 2743 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → (𝑦 = 𝑋𝑦 = 𝑌))
7372ifbid 4496 . . . . . . . . . . . . 13 (𝑋 = 𝑌 → if(𝑦 = 𝑋, 1, 0) = if(𝑦 = 𝑌, 1, 0))
7473mpteq2dv 5183 . . . . . . . . . . . 12 (𝑋 = 𝑌 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)))
7574oveq2d 7362 . . . . . . . . . . 11 (𝑋 = 𝑌 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7675eqeq1d 2733 . . . . . . . . . 10 (𝑋 = 𝑌 → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7724adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
78 1nn0 12397 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
79 0nn0 12396 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
8078, 79ifcli 4520 . . . . . . . . . . . . . 14 if(𝑦 = 𝑌, 1, 0) ∈ ℕ0
8180a1i 11 . . . . . . . . . . . . 13 (𝑦𝐼 → if(𝑦 = 𝑌, 1, 0) ∈ ℕ0)
8250, 81fmpti 7045 . . . . . . . . . . . 12 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0
8382a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0)
84 nn0cn 12391 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
85 nn0cn 12391 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
86 addcom 11299 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) = (𝑚 + 𝑛))
8786eqeq1d 2733 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚 ↔ (𝑚 + 𝑛) = 𝑚))
88 addid0 11536 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
8988ancoms 458 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
9087, 89bitrd 279 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9184, 85, 90syl2an 596 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9291adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9313, 77, 83, 92caofidlcan 7648 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9476, 93sylan9bbr 510 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋 = 𝑌) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9571, 94biadanid 822 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))))
9695biancomd 463 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)))
9796ifbid 4496 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9822, 97eqtrd 2766 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9998oveq2d 7362 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))))
100 ovif2 7445 . . . . 5 (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)))
101 fveq1 6821 . . . . . . . . . . 11 (𝑘 = (𝐼 × {0}) → (𝑘𝑋) = ((𝐼 × {0})‘𝑋))
102101oveq1d 7361 . . . . . . . . . 10 (𝑘 = (𝐼 × {0}) → ((𝑘𝑋) + 1) = (((𝐼 × {0})‘𝑋) + 1))
1034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
104 c0ex 11106 . . . . . . . . . . . . . 14 0 ∈ V
105104fvconst2 7138 . . . . . . . . . . . . 13 (𝑋𝐼 → ((𝐼 × {0})‘𝑋) = 0)
106103, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐼 × {0})‘𝑋) = 0)
107106oveq1d 7361 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = (0 + 1))
108 0p1e1 12242 . . . . . . . . . . 11 (0 + 1) = 1
109107, 108eqtrdi 2782 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = 1)
110102, 109sylan9eqr 2788 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 = (𝐼 × {0})) → ((𝑘𝑋) + 1) = 1)
111110adantrr 717 . . . . . . . 8 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → ((𝑘𝑋) + 1) = 1)
112111oveq1d 7361 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1(.g𝑅)(1r𝑅)))
113 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
114113, 12, 7ringidcld 20184 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
115 eqid 2731 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
116113, 115mulg1 18994 . . . . . . . . 9 ((1r𝑅) ∈ (Base‘𝑅) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
117114, 116syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
118117ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
119112, 118eqtrd 2766 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1r𝑅))
1207ringgrpd 20160 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
121120grpmndd 18859 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
122121adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd)
12377, 103ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
12478a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 1 ∈ ℕ0)
125123, 124nn0addcld 12446 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
126113, 115, 11mulgnn0z 19014 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑘𝑋) + 1) ∈ ℕ0) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
127122, 125, 126syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
128127adantr 480 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
129119, 128ifeq12da 4506 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
130100, 129eqtrid 2778 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
131 ancom 460 . . . . . . 7 ((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0})))
132 ifbi 4495 . . . . . . 7 (((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)))
133131, 132ax-mp 5 . . . . . 6 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅))
134 ifan 4526 . . . . . 6 if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
135133, 134eqtri 2754 . . . . 5 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
136135a1i 11 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
13799, 130, 1363eqtrd 2770 . . 3 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
138137mpteq2dva 5182 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))))
139 ifmpt2v 7448 . . 3 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
140 psdmvr.o . . . . 5 1 = (1r𝑆)
1411, 6, 7, 3, 11, 12, 140psr1 21908 . . . 4 (𝜑1 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
142 psdmvr.z . . . . . 6 0 = (0g𝑆)
1431, 6, 120, 3, 11, 142psr0 21895 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}))
144 fconstmpt 5676 . . . . 5 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))
145143, 144eqtrdi 2782 . . . 4 (𝜑0 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
146141, 145ifeq12d 4494 . . 3 (𝜑 → if(𝑋 = 𝑌, 1 , 0 ) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))))
147139, 146eqtr4id 2785 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, 1 , 0 ))
14810, 138, 1473eqtrd 2770 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062   = wceq 1541  wcel 2111  wne 2928  {crab 3395  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  cle 11147  cn 12125  0cn0 12381  Basecbs 17120  0gc0g 17343  Mndcmnd 18642  .gcmg 18980  1rcur 20099  Ringcrg 20151   mPwSer cmps 21841   mVar cmvr 21842   mPSDer cpsd 22045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-psr 21846  df-mvr 21847  df-psd 22071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator