MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmvr Structured version   Visualization version   GIF version

Theorem psdmvr 22054
Description: The partial derivative of a variable is the Kronecker delta if(𝑋 = 𝑌, 1 , 0 ). (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
psdmvr.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmvr.z 0 = (0g𝑆)
psdmvr.o 1 = (1r𝑆)
psdmvr.v 𝑉 = (𝐼 mVar 𝑅)
psdmvr.i (𝜑𝐼𝑊)
psdmvr.r (𝜑𝑅 ∈ Ring)
psdmvr.x (𝜑𝑋𝐼)
psdmvr.y (𝜑𝑌𝐼)
Assertion
Ref Expression
psdmvr (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))

Proof of Theorem psdmvr
Dummy variables 𝑘 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdmvr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2729 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdmvr.x . . 3 (𝜑𝑋𝐼)
5 psdmvr.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
6 psdmvr.i . . . 4 (𝜑𝐼𝑊)
7 psdmvr.r . . . 4 (𝜑𝑅 ∈ Ring)
8 psdmvr.y . . . 4 (𝜑𝑌𝐼)
91, 5, 2, 6, 7, 8mvrcl2 21894 . . 3 (𝜑 → (𝑉𝑌) ∈ (Base‘𝑆))
101, 2, 3, 4, 9psdval 22044 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
11 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
12 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
136adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑊)
147adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
158adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑌𝐼)
16 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
173psrbagsn 21968 . . . . . . . . . 10 (𝐼𝑊 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
186, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1918adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
203psrbagaddcl 21831 . . . . . . . 8 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2116, 19, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
225, 3, 11, 12, 13, 14, 15, 21mvrval2 21890 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)))
23 1red 11116 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ∈ ℝ)
243psrbagf 21825 . . . . . . . . . . . . . . . 16 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
2524ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑘:𝐼⟶ℕ0)
264ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋𝐼)
2725, 26ffvelcdmd 7019 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → (𝑘𝑋) ∈ ℕ0)
28 nn0addge2 12431 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘𝑋) ∈ ℕ0) → 1 ≤ ((𝑘𝑋) + 1))
2923, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ ((𝑘𝑋) + 1))
30 fveq1 6821 . . . . . . . . . . . . . . 15 ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3130adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋))
3224ffnd 6653 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘 Fn 𝐼)
3332adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 Fn 𝐼)
34 1re 11115 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
35 0re 11117 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
3634, 35ifcli 4524 . . . . . . . . . . . . . . . . . . . 20 if(𝑦 = 𝑋, 1, 0) ∈ ℝ
3736elexi 3459 . . . . . . . . . . . . . . . . . . 19 if(𝑦 = 𝑋, 1, 0) ∈ V
38 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
3937, 38fnmpti 6625 . . . . . . . . . . . . . . . . . 18 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
4039a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
41 inidm 4178 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
42 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → (𝑘𝑋) = (𝑘𝑋))
43 iftrue 4482 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
44 1ex 11111 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
4543, 38, 44fvmpt 6930 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4645adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
4733, 40, 13, 13, 41, 42, 46ofval 7624 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋𝐼) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
484, 47mpidan 689 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
4948adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑘𝑋) + 1))
50 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))
51 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝑦 = 𝑌𝑋 = 𝑌))
5251ifbid 4500 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → if(𝑦 = 𝑌, 1, 0) = if(𝑋 = 𝑌, 1, 0))
5334, 35ifcli 4524 . . . . . . . . . . . . . . . . 17 if(𝑋 = 𝑌, 1, 0) ∈ ℝ
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑋 = 𝑌, 1, 0) ∈ ℝ)
5550, 52, 4, 54fvmptd3 6953 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))‘𝑋) = if(𝑋 = 𝑌, 1, 0))
5731, 49, 563eqtr3d 2772 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → ((𝑘𝑋) + 1) = if(𝑋 = 𝑌, 1, 0))
5829, 57breqtrd 5118 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 ≤ if(𝑋 = 𝑌, 1, 0))
59 1le1 11748 . . . . . . . . . . . . . 14 1 ≤ 1
60 0le1 11643 . . . . . . . . . . . . . 14 0 ≤ 1
61 anifp 1071 . . . . . . . . . . . . . 14 ((1 ≤ 1 ∧ 0 ≤ 1) → if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6259, 60, 61mp2an 692 . . . . . . . . . . . . 13 if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1)
63 brif1 7446 . . . . . . . . . . . . 13 (if(𝑋 = 𝑌, 1, 0) ≤ 1 ↔ if-(𝑋 = 𝑌, 1 ≤ 1, 0 ≤ 1))
6462, 63mpbir 231 . . . . . . . . . . . 12 if(𝑋 = 𝑌, 1, 0) ≤ 1
6534, 53letri3i 11232 . . . . . . . . . . . 12 (1 = if(𝑋 = 𝑌, 1, 0) ↔ (1 ≤ if(𝑋 = 𝑌, 1, 0) ∧ if(𝑋 = 𝑌, 1, 0) ≤ 1))
6658, 64, 65sylanblrc 590 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 1 = if(𝑋 = 𝑌, 1, 0))
6766eqcomd 2735 . . . . . . . . . 10 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → if(𝑋 = 𝑌, 1, 0) = 1)
68 ax-1ne0 11078 . . . . . . . . . . 11 1 ≠ 0
69 iftrueb 4489 . . . . . . . . . . 11 (1 ≠ 0 → (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌))
7068, 69ax-mp 5 . . . . . . . . . 10 (if(𝑋 = 𝑌, 1, 0) = 1 ↔ 𝑋 = 𝑌)
7167, 70sylib 218 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) → 𝑋 = 𝑌)
72 eqeq2 2741 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → (𝑦 = 𝑋𝑦 = 𝑌))
7372ifbid 4500 . . . . . . . . . . . . 13 (𝑋 = 𝑌 → if(𝑦 = 𝑋, 1, 0) = if(𝑦 = 𝑌, 1, 0))
7473mpteq2dv 5186 . . . . . . . . . . . 12 (𝑋 = 𝑌 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)))
7574oveq2d 7365 . . . . . . . . . . 11 (𝑋 = 𝑌 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7675eqeq1d 2731 . . . . . . . . . 10 (𝑋 = 𝑌 → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))))
7724adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
78 1nn0 12400 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
79 0nn0 12399 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
8078, 79ifcli 4524 . . . . . . . . . . . . . 14 if(𝑦 = 𝑌, 1, 0) ∈ ℕ0
8180a1i 11 . . . . . . . . . . . . 13 (𝑦𝐼 → if(𝑦 = 𝑌, 1, 0) ∈ ℕ0)
8250, 81fmpti 7046 . . . . . . . . . . . 12 (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0
8382a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)):𝐼⟶ℕ0)
84 nn0cn 12394 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
85 nn0cn 12394 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
86 addcom 11302 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) = (𝑚 + 𝑛))
8786eqeq1d 2731 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚 ↔ (𝑚 + 𝑛) = 𝑚))
88 addid0 11539 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
8988ancoms 458 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 + 𝑛) = 𝑚𝑛 = 0))
9087, 89bitrd 279 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9184, 85, 90syl2an 596 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9291adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((𝑛 + 𝑚) = 𝑚𝑛 = 0))
9313, 77, 83, 92caofidlcan 7651 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9476, 93sylan9bbr 510 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑋 = 𝑌) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ 𝑘 = (𝐼 × {0})))
9571, 94biadanid 822 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))))
9695biancomd 463 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)) ↔ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)))
9796ifbid 4500 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑦𝐼 ↦ if(𝑦 = 𝑌, 1, 0)), (1r𝑅), (0g𝑅)) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9822, 97eqtrd 2764 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
9998oveq2d 7365 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))))
100 ovif2 7448 . . . . 5 (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)))
101 fveq1 6821 . . . . . . . . . . 11 (𝑘 = (𝐼 × {0}) → (𝑘𝑋) = ((𝐼 × {0})‘𝑋))
102101oveq1d 7364 . . . . . . . . . 10 (𝑘 = (𝐼 × {0}) → ((𝑘𝑋) + 1) = (((𝐼 × {0})‘𝑋) + 1))
1034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
104 c0ex 11109 . . . . . . . . . . . . . 14 0 ∈ V
105104fvconst2 7140 . . . . . . . . . . . . 13 (𝑋𝐼 → ((𝐼 × {0})‘𝑋) = 0)
106103, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐼 × {0})‘𝑋) = 0)
107106oveq1d 7364 . . . . . . . . . . 11 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = (0 + 1))
108 0p1e1 12245 . . . . . . . . . . 11 (0 + 1) = 1
109107, 108eqtrdi 2780 . . . . . . . . . 10 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 × {0})‘𝑋) + 1) = 1)
110102, 109sylan9eqr 2786 . . . . . . . . 9 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 = (𝐼 × {0})) → ((𝑘𝑋) + 1) = 1)
111110adantrr 717 . . . . . . . 8 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → ((𝑘𝑋) + 1) = 1)
112111oveq1d 7364 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1(.g𝑅)(1r𝑅)))
113 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
114113, 12, 7ringidcld 20151 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
115 eqid 2729 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
116113, 115mulg1 18960 . . . . . . . . 9 ((1r𝑅) ∈ (Base‘𝑅) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
117114, 116syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
118117ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (1(.g𝑅)(1r𝑅)) = (1r𝑅))
119112, 118eqtrd 2764 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)) = (1r𝑅))
1207ringgrpd 20127 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
121120grpmndd 18825 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
122121adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd)
12377, 103ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
12478a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 1 ∈ ℕ0)
125123, 124nn0addcld 12449 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
126113, 115, 11mulgnn0z 18980 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑘𝑋) + 1) ∈ ℕ0) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
127122, 125, 126syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
128127adantr 480 . . . . . 6 (((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌)) → (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅)) = (0g𝑅))
129119, 128ifeq12da 4510 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (((𝑘𝑋) + 1)(.g𝑅)(1r𝑅)), (((𝑘𝑋) + 1)(.g𝑅)(0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
130100, 129eqtrid 2776 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅))) = if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)))
131 ancom 460 . . . . . . 7 ((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0})))
132 ifbi 4499 . . . . . . 7 (((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑘 = (𝐼 × {0}))) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)))
133131, 132ax-mp 5 . . . . . 6 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅))
134 ifan 4530 . . . . . 6 if((𝑋 = 𝑌𝑘 = (𝐼 × {0})), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
135133, 134eqtri 2752 . . . . 5 if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))
136135a1i 11 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if((𝑘 = (𝐼 × {0}) ∧ 𝑋 = 𝑌), (1r𝑅), (0g𝑅)) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
13799, 130, 1363eqtrd 2768 . . 3 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅)))
138137mpteq2dva 5185 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)((𝑉𝑌)‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))))
139 ifmpt2v 7451 . . 3 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
140 psdmvr.o . . . . 5 1 = (1r𝑆)
1411, 6, 7, 3, 11, 12, 140psr1 21878 . . . 4 (𝜑1 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
142 psdmvr.z . . . . . 6 0 = (0g𝑆)
1431, 6, 120, 3, 11, 142psr0 21865 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}))
144 fconstmpt 5681 . . . . 5 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))
145143, 144eqtrdi 2780 . . . 4 (𝜑0 = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅)))
146141, 145ifeq12d 4498 . . 3 (𝜑 → if(𝑋 = 𝑌, 1 , 0 ) = if(𝑋 = 𝑌, (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))), (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (0g𝑅))))
147139, 146eqtr4id 2783 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑋 = 𝑌, if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑋 = 𝑌, 1 , 0 ))
14810, 138, 1473eqtrd 2768 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉𝑌)) = if(𝑋 = 𝑌, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062   = wceq 1540  wcel 2109  wne 2925  {crab 3394  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  m cmap 8753  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  cle 11150  cn 12128  0cn0 12384  Basecbs 17120  0gc0g 17343  Mndcmnd 18608  .gcmg 18946  1rcur 20066  Ringcrg 20118   mPwSer cmps 21811   mVar cmvr 21812   mPSDer cpsd 22015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-psr 21816  df-mvr 21817  df-psd 22041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator