Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpid1g Structured version   Visualization version   GIF version

Theorem ifpid1g 40621
Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpid1g ((𝜑 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜒𝜑) ∧ (𝜑𝜓)))

Proof of Theorem ifpid1g
StepHypRef Expression
1 ifpidg 40618 . 2 ((𝜑 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((((𝜑𝜓) → 𝜑) ∧ ((𝜑𝜑) → 𝜓)) ∧ ((𝜒 → (𝜑𝜑)) ∧ (𝜑 → (𝜑𝜒)))))
2 ancom 464 . 2 (((((𝜑𝜓) → 𝜑) ∧ ((𝜑𝜑) → 𝜓)) ∧ ((𝜒 → (𝜑𝜑)) ∧ (𝜑 → (𝜑𝜒)))) ↔ (((𝜒 → (𝜑𝜑)) ∧ (𝜑 → (𝜑𝜒))) ∧ (((𝜑𝜓) → 𝜑) ∧ ((𝜑𝜑) → 𝜓))))
3 pm4.25 903 . . . . 5 (𝜑 ↔ (𝜑𝜑))
43imbi2i 339 . . . 4 ((𝜒𝜑) ↔ (𝜒 → (𝜑𝜑)))
5 orc 864 . . . . 5 (𝜑 → (𝜑𝜒))
65biantru 533 . . . 4 ((𝜒 → (𝜑𝜑)) ↔ ((𝜒 → (𝜑𝜑)) ∧ (𝜑 → (𝜑𝜒))))
74, 6bitr2i 279 . . 3 (((𝜒 → (𝜑𝜑)) ∧ (𝜑 → (𝜑𝜒))) ↔ (𝜒𝜑))
8 pm4.24 567 . . . . 5 (𝜑 ↔ (𝜑𝜑))
98imbi1i 353 . . . 4 ((𝜑𝜓) ↔ ((𝜑𝜑) → 𝜓))
10 simpl 486 . . . . 5 ((𝜑𝜓) → 𝜑)
1110biantrur 534 . . . 4 (((𝜑𝜑) → 𝜓) ↔ (((𝜑𝜓) → 𝜑) ∧ ((𝜑𝜑) → 𝜓)))
129, 11bitr2i 279 . . 3 ((((𝜑𝜓) → 𝜑) ∧ ((𝜑𝜑) → 𝜓)) ↔ (𝜑𝜓))
137, 12anbi12i 629 . 2 ((((𝜒 → (𝜑𝜑)) ∧ (𝜑 → (𝜑𝜒))) ∧ (((𝜑𝜓) → 𝜑) ∧ ((𝜑𝜑) → 𝜓))) ↔ ((𝜒𝜑) ∧ (𝜑𝜓)))
141, 2, 133bitri 300 1 ((𝜑 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜒𝜑) ∧ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator