| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iftrueb | Structured version Visualization version GIF version | ||
| Description: When the branches are not equal, an "if" condition results in the first branch if and only if its condition is true. (Contributed by SN, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| iftrueb | ⊢ (𝐴 ≠ 𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necom 2994 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → 𝐵 ≠ 𝐴) |
| 3 | iffalse 4534 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 4 | 3 | neeq1d 3000 | . . . 4 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵) ≠ 𝐴 ↔ 𝐵 ≠ 𝐴)) |
| 5 | 2, 4 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ≠ 𝐵 → (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) ≠ 𝐴)) |
| 6 | 5 | necon4bd 2960 | . 2 ⊢ (𝐴 ≠ 𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝜑)) |
| 7 | iftrue 4531 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 8 | 6, 7 | impbid1 225 | 1 ⊢ (𝐴 ≠ 𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2940 ifcif 4525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-if 4526 |
| This theorem is referenced by: psdmvr 22173 |
| Copyright terms: Public domain | W3C validator |