MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iftrueb Structured version   Visualization version   GIF version

Theorem iftrueb 4538
Description: When the branches are not equal, an "if" condition results in the first branch if and only if its condition is true. (Contributed by SN, 16-Oct-2025.)
Assertion
Ref Expression
iftrueb (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴𝜑))

Proof of Theorem iftrueb
StepHypRef Expression
1 necom 2994 . . . . 5 (𝐴𝐵𝐵𝐴)
21biimpi 216 . . . 4 (𝐴𝐵𝐵𝐴)
3 iffalse 4534 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43neeq1d 3000 . . . 4 𝜑 → (if(𝜑, 𝐴, 𝐵) ≠ 𝐴𝐵𝐴))
52, 4syl5ibrcom 247 . . 3 (𝐴𝐵 → (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) ≠ 𝐴))
65necon4bd 2960 . 2 (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴𝜑))
7 iftrue 4531 . 2 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
86, 7impbid1 225 1 (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wne 2940  ifcif 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-if 4526
This theorem is referenced by:  psdmvr  22173
  Copyright terms: Public domain W3C validator