| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version | ||
| Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4497 directly in this case. It happens, e.g., in oevn0 8479. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | iffalse 4497 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-if 4489 |
| This theorem is referenced by: xpima2 6157 axcc2lem 10389 xnegmnf 13170 rexneg 13171 xaddpnf1 13186 xaddpnf2 13187 xaddmnf1 13188 xaddmnf2 13189 mnfaddpnf 13191 rexadd 13192 fztpval 13547 sadcp1 16425 smupp1 16450 pcval 16815 ramtcl 16981 ramub1lem1 16997 xpsfrnel 17525 gexlem2 19512 frgpuptinv 19701 frgpup3lem 19707 gsummpt1n0 19895 dprdfid 19949 dpjrid 19994 sdrgacs 20710 abvtrivd 20741 znf1o 21461 znhash 21468 znunithash 21474 mplsubrg 21914 psdmul 22053 mamulid 22328 mamurid 22329 dmatid 22382 dmatmulcl 22387 scmatdmat 22402 mdetdiagid 22487 chpdmatlem2 22726 chpscmat 22729 chpidmat 22734 xkoccn 23506 iccpnfhmeo 24843 xrhmeo 24844 ioorinv2 25476 mbfi1fseqlem4 25619 ellimc2 25778 dvcobr 25849 dvcobrOLD 25850 ply1remlem 26070 dvtaylp 26278 0cxp 26575 lgsval3 27226 lgsdinn0 27256 dchrisumlem1 27400 dchrvmasumiflem1 27412 rpvmasum2 27423 dchrvmasumlem 27434 padicabv 27541 indispconn 35221 ex-sategoelel 35408 fnejoin1 36356 ptrecube 37614 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 fdc 37739 cdlemk40f 40913 fiabv 42524 blenn0 48562 |
| Copyright terms: Public domain | W3C validator |