Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4432 directly in this case. It happens, e.g., in oevn0 8156. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2952 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4432 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 220 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ≠ wne 2951 ifcif 4423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-if 4424 |
This theorem is referenced by: xpima2 6018 axcc2lem 9909 xnegmnf 12657 rexneg 12658 xaddpnf1 12673 xaddpnf2 12674 xaddmnf1 12675 xaddmnf2 12676 mnfaddpnf 12678 rexadd 12679 fztpval 13031 sadcp1 15867 smupp1 15892 pcval 16249 ramtcl 16414 ramub1lem1 16430 xpsfrnel 16906 gexlem2 18787 frgpuptinv 18977 frgpup3lem 18983 gsummpt1n0 19166 dprdfid 19220 dpjrid 19265 sdrgacs 19661 abvtrivd 19692 znf1o 20332 znhash 20339 znunithash 20345 mplsubrg 20783 mamulid 21154 mamurid 21155 dmatid 21208 dmatmulcl 21213 scmatdmat 21228 mdetdiagid 21313 chpdmatlem2 21552 chpscmat 21555 chpidmat 21560 xkoccn 22332 iccpnfhmeo 23659 xrhmeo 23660 ioorinv2 24288 mbfi1fseqlem4 24431 ellimc2 24589 dvcobr 24658 ply1remlem 24875 dvtaylp 25077 0cxp 25369 lgsval3 26011 lgsdinn0 26041 dchrisumlem1 26185 dchrvmasumiflem1 26197 rpvmasum2 26208 dchrvmasumlem 26219 padicabv 26326 indispconn 32724 ex-sategoelel 32911 fnejoin1 34140 ptrecube 35371 poimirlem16 35387 poimirlem17 35388 poimirlem19 35390 poimirlem20 35391 fdc 35497 cdlemk40f 38529 blenn0 45401 |
Copyright terms: Public domain | W3C validator |