![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4538 directly in this case. It happens, e.g., in oevn0 8534. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2931 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4538 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ≠ wne 2930 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-if 4530 |
This theorem is referenced by: xpima2 6188 axcc2lem 10459 xnegmnf 13221 rexneg 13222 xaddpnf1 13237 xaddpnf2 13238 xaddmnf1 13239 xaddmnf2 13240 mnfaddpnf 13242 rexadd 13243 fztpval 13595 sadcp1 16429 smupp1 16454 pcval 16812 ramtcl 16978 ramub1lem1 16994 xpsfrnel 17543 gexlem2 19541 frgpuptinv 19730 frgpup3lem 19736 gsummpt1n0 19924 dprdfid 19978 dpjrid 20023 sdrgacs 20693 abvtrivd 20724 znf1o 21489 znhash 21496 znunithash 21502 mplsubrg 21954 psdmul 22098 mamulid 22373 mamurid 22374 dmatid 22427 dmatmulcl 22432 scmatdmat 22447 mdetdiagid 22532 chpdmatlem2 22771 chpscmat 22774 chpidmat 22779 xkoccn 23553 iccpnfhmeo 24900 xrhmeo 24901 ioorinv2 25534 mbfi1fseqlem4 25678 ellimc2 25836 dvcobr 25907 dvcobrOLD 25908 ply1remlem 26129 dvtaylp 26335 0cxp 26630 lgsval3 27278 lgsdinn0 27308 dchrisumlem1 27452 dchrvmasumiflem1 27464 rpvmasum2 27475 dchrvmasumlem 27486 padicabv 27593 indispconn 34914 ex-sategoelel 35101 fnejoin1 35922 ptrecube 37163 poimirlem16 37179 poimirlem17 37180 poimirlem19 37182 poimirlem20 37183 fdc 37288 cdlemk40f 40461 blenn0 47758 |
Copyright terms: Public domain | W3C validator |