![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4536 directly in this case. It happens, e.g., in oevn0 8517. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4536 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2938 ifcif 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-if 4528 |
This theorem is referenced by: xpima2 6182 axcc2lem 10433 xnegmnf 13193 rexneg 13194 xaddpnf1 13209 xaddpnf2 13210 xaddmnf1 13211 xaddmnf2 13212 mnfaddpnf 13214 rexadd 13215 fztpval 13567 sadcp1 16400 smupp1 16425 pcval 16781 ramtcl 16947 ramub1lem1 16963 xpsfrnel 17512 gexlem2 19491 frgpuptinv 19680 frgpup3lem 19686 gsummpt1n0 19874 dprdfid 19928 dpjrid 19973 sdrgacs 20560 abvtrivd 20591 znf1o 21326 znhash 21333 znunithash 21339 mplsubrg 21783 mamulid 22163 mamurid 22164 dmatid 22217 dmatmulcl 22222 scmatdmat 22237 mdetdiagid 22322 chpdmatlem2 22561 chpscmat 22564 chpidmat 22569 xkoccn 23343 iccpnfhmeo 24690 xrhmeo 24691 ioorinv2 25324 mbfi1fseqlem4 25468 ellimc2 25626 dvcobr 25697 dvcobrOLD 25698 ply1remlem 25915 dvtaylp 26118 0cxp 26410 lgsval3 27054 lgsdinn0 27084 dchrisumlem1 27228 dchrvmasumiflem1 27240 rpvmasum2 27251 dchrvmasumlem 27262 padicabv 27369 indispconn 34523 ex-sategoelel 34710 fnejoin1 35556 ptrecube 36791 poimirlem16 36807 poimirlem17 36808 poimirlem19 36810 poimirlem20 36811 fdc 36916 cdlemk40f 40093 blenn0 47346 |
Copyright terms: Public domain | W3C validator |