![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4557 directly in this case. It happens, e.g., in oevn0 8571. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4557 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-if 4549 |
This theorem is referenced by: xpima2 6215 axcc2lem 10505 xnegmnf 13272 rexneg 13273 xaddpnf1 13288 xaddpnf2 13289 xaddmnf1 13290 xaddmnf2 13291 mnfaddpnf 13293 rexadd 13294 fztpval 13646 sadcp1 16501 smupp1 16526 pcval 16891 ramtcl 17057 ramub1lem1 17073 xpsfrnel 17622 gexlem2 19624 frgpuptinv 19813 frgpup3lem 19819 gsummpt1n0 20007 dprdfid 20061 dpjrid 20106 sdrgacs 20824 abvtrivd 20855 znf1o 21593 znhash 21600 znunithash 21606 mplsubrg 22048 psdmul 22193 mamulid 22468 mamurid 22469 dmatid 22522 dmatmulcl 22527 scmatdmat 22542 mdetdiagid 22627 chpdmatlem2 22866 chpscmat 22869 chpidmat 22874 xkoccn 23648 iccpnfhmeo 24995 xrhmeo 24996 ioorinv2 25629 mbfi1fseqlem4 25773 ellimc2 25932 dvcobr 26003 dvcobrOLD 26004 ply1remlem 26224 dvtaylp 26430 0cxp 26726 lgsval3 27377 lgsdinn0 27407 dchrisumlem1 27551 dchrvmasumiflem1 27563 rpvmasum2 27574 dchrvmasumlem 27585 padicabv 27692 indispconn 35202 ex-sategoelel 35389 fnejoin1 36334 ptrecube 37580 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 fdc 37705 cdlemk40f 40876 fiabv 42491 blenn0 48307 |
Copyright terms: Public domain | W3C validator |