![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4537 directly in this case. It happens, e.g., in oevn0 8514. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4537 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-if 4529 |
This theorem is referenced by: xpima2 6183 axcc2lem 10430 xnegmnf 13188 rexneg 13189 xaddpnf1 13204 xaddpnf2 13205 xaddmnf1 13206 xaddmnf2 13207 mnfaddpnf 13209 rexadd 13210 fztpval 13562 sadcp1 16395 smupp1 16420 pcval 16776 ramtcl 16942 ramub1lem1 16958 xpsfrnel 17507 gexlem2 19449 frgpuptinv 19638 frgpup3lem 19644 gsummpt1n0 19832 dprdfid 19886 dpjrid 19931 sdrgacs 20416 abvtrivd 20447 znf1o 21106 znhash 21113 znunithash 21119 mplsubrg 21563 mamulid 21942 mamurid 21943 dmatid 21996 dmatmulcl 22001 scmatdmat 22016 mdetdiagid 22101 chpdmatlem2 22340 chpscmat 22343 chpidmat 22348 xkoccn 23122 iccpnfhmeo 24460 xrhmeo 24461 ioorinv2 25091 mbfi1fseqlem4 25235 ellimc2 25393 dvcobr 25462 ply1remlem 25679 dvtaylp 25881 0cxp 26173 lgsval3 26815 lgsdinn0 26845 dchrisumlem1 26989 dchrvmasumiflem1 27001 rpvmasum2 27012 dchrvmasumlem 27023 padicabv 27130 indispconn 34220 ex-sategoelel 34407 gg-dvcobr 35171 fnejoin1 35248 ptrecube 36483 poimirlem16 36499 poimirlem17 36500 poimirlem19 36502 poimirlem20 36503 fdc 36608 cdlemk40f 39785 blenn0 47249 |
Copyright terms: Public domain | W3C validator |