| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version | ||
| Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4483 directly in this case. It happens, e.g., in oevn0 8436. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | iffalse 4483 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 ifcif 4474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-if 4475 |
| This theorem is referenced by: xpima2 6137 axcc2lem 10333 xnegmnf 13115 rexneg 13116 xaddpnf1 13131 xaddpnf2 13132 xaddmnf1 13133 xaddmnf2 13134 mnfaddpnf 13136 rexadd 13137 fztpval 13492 sadcp1 16372 smupp1 16397 pcval 16762 ramtcl 16928 ramub1lem1 16944 xpsfrnel 17472 gexlem2 19500 frgpuptinv 19689 frgpup3lem 19695 gsummpt1n0 19883 dprdfid 19937 dpjrid 19982 sdrgacs 20722 abvtrivd 20753 znf1o 21494 znhash 21501 znunithash 21507 mplsubrg 21948 psdmul 22087 mamulid 22362 mamurid 22363 dmatid 22416 dmatmulcl 22421 scmatdmat 22436 mdetdiagid 22521 chpdmatlem2 22760 chpscmat 22763 chpidmat 22768 xkoccn 23540 iccpnfhmeo 24876 xrhmeo 24877 ioorinv2 25509 mbfi1fseqlem4 25652 ellimc2 25811 dvcobr 25882 dvcobrOLD 25883 ply1remlem 26103 dvtaylp 26311 0cxp 26608 lgsval3 27259 lgsdinn0 27289 dchrisumlem1 27433 dchrvmasumiflem1 27445 rpvmasum2 27456 dchrvmasumlem 27467 padicabv 27574 indispconn 35285 ex-sategoelel 35472 fnejoin1 36419 ptrecube 37666 poimirlem16 37682 poimirlem17 37683 poimirlem19 37685 poimirlem20 37686 fdc 37791 cdlemk40f 41024 fiabv 42635 blenn0 48679 |
| Copyright terms: Public domain | W3C validator |