| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version | ||
| Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4509 directly in this case. It happens, e.g., in oevn0 8527. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2933 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | iffalse 4509 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-if 4501 |
| This theorem is referenced by: xpima2 6173 axcc2lem 10450 xnegmnf 13226 rexneg 13227 xaddpnf1 13242 xaddpnf2 13243 xaddmnf1 13244 xaddmnf2 13245 mnfaddpnf 13247 rexadd 13248 fztpval 13603 sadcp1 16474 smupp1 16499 pcval 16864 ramtcl 17030 ramub1lem1 17046 xpsfrnel 17576 gexlem2 19563 frgpuptinv 19752 frgpup3lem 19758 gsummpt1n0 19946 dprdfid 20000 dpjrid 20045 sdrgacs 20761 abvtrivd 20792 znf1o 21512 znhash 21519 znunithash 21525 mplsubrg 21965 psdmul 22104 mamulid 22379 mamurid 22380 dmatid 22433 dmatmulcl 22438 scmatdmat 22453 mdetdiagid 22538 chpdmatlem2 22777 chpscmat 22780 chpidmat 22785 xkoccn 23557 iccpnfhmeo 24894 xrhmeo 24895 ioorinv2 25528 mbfi1fseqlem4 25671 ellimc2 25830 dvcobr 25901 dvcobrOLD 25902 ply1remlem 26122 dvtaylp 26330 0cxp 26627 lgsval3 27278 lgsdinn0 27308 dchrisumlem1 27452 dchrvmasumiflem1 27464 rpvmasum2 27475 dchrvmasumlem 27486 padicabv 27593 indispconn 35256 ex-sategoelel 35443 fnejoin1 36386 ptrecube 37644 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 fdc 37769 cdlemk40f 40938 fiabv 42559 blenn0 48553 |
| Copyright terms: Public domain | W3C validator |