| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version | ||
| Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4500 directly in this case. It happens, e.g., in oevn0 8482. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | iffalse 4500 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-if 4492 |
| This theorem is referenced by: xpima2 6160 axcc2lem 10396 xnegmnf 13177 rexneg 13178 xaddpnf1 13193 xaddpnf2 13194 xaddmnf1 13195 xaddmnf2 13196 mnfaddpnf 13198 rexadd 13199 fztpval 13554 sadcp1 16432 smupp1 16457 pcval 16822 ramtcl 16988 ramub1lem1 17004 xpsfrnel 17532 gexlem2 19519 frgpuptinv 19708 frgpup3lem 19714 gsummpt1n0 19902 dprdfid 19956 dpjrid 20001 sdrgacs 20717 abvtrivd 20748 znf1o 21468 znhash 21475 znunithash 21481 mplsubrg 21921 psdmul 22060 mamulid 22335 mamurid 22336 dmatid 22389 dmatmulcl 22394 scmatdmat 22409 mdetdiagid 22494 chpdmatlem2 22733 chpscmat 22736 chpidmat 22741 xkoccn 23513 iccpnfhmeo 24850 xrhmeo 24851 ioorinv2 25483 mbfi1fseqlem4 25626 ellimc2 25785 dvcobr 25856 dvcobrOLD 25857 ply1remlem 26077 dvtaylp 26285 0cxp 26582 lgsval3 27233 lgsdinn0 27263 dchrisumlem1 27407 dchrvmasumiflem1 27419 rpvmasum2 27430 dchrvmasumlem 27441 padicabv 27548 indispconn 35228 ex-sategoelel 35415 fnejoin1 36363 ptrecube 37621 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 fdc 37746 cdlemk40f 40920 fiabv 42531 blenn0 48566 |
| Copyright terms: Public domain | W3C validator |