![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4540 directly in this case. It happens, e.g., in oevn0 8552. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4540 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-if 4532 |
This theorem is referenced by: xpima2 6206 axcc2lem 10474 xnegmnf 13249 rexneg 13250 xaddpnf1 13265 xaddpnf2 13266 xaddmnf1 13267 xaddmnf2 13268 mnfaddpnf 13270 rexadd 13271 fztpval 13623 sadcp1 16489 smupp1 16514 pcval 16878 ramtcl 17044 ramub1lem1 17060 xpsfrnel 17609 gexlem2 19615 frgpuptinv 19804 frgpup3lem 19810 gsummpt1n0 19998 dprdfid 20052 dpjrid 20097 sdrgacs 20819 abvtrivd 20850 znf1o 21588 znhash 21595 znunithash 21601 mplsubrg 22043 psdmul 22188 mamulid 22463 mamurid 22464 dmatid 22517 dmatmulcl 22522 scmatdmat 22537 mdetdiagid 22622 chpdmatlem2 22861 chpscmat 22864 chpidmat 22869 xkoccn 23643 iccpnfhmeo 24990 xrhmeo 24991 ioorinv2 25624 mbfi1fseqlem4 25768 ellimc2 25927 dvcobr 25998 dvcobrOLD 25999 ply1remlem 26219 dvtaylp 26427 0cxp 26723 lgsval3 27374 lgsdinn0 27404 dchrisumlem1 27548 dchrvmasumiflem1 27560 rpvmasum2 27571 dchrvmasumlem 27582 padicabv 27689 indispconn 35219 ex-sategoelel 35406 fnejoin1 36351 ptrecube 37607 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 fdc 37732 cdlemk40f 40902 fiabv 42523 blenn0 48423 |
Copyright terms: Public domain | W3C validator |