Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4468 directly in this case. It happens, e.g., in oevn0 8345. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4468 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-if 4460 |
This theorem is referenced by: xpima2 6087 axcc2lem 10192 xnegmnf 12944 rexneg 12945 xaddpnf1 12960 xaddpnf2 12961 xaddmnf1 12962 xaddmnf2 12963 mnfaddpnf 12965 rexadd 12966 fztpval 13318 sadcp1 16162 smupp1 16187 pcval 16545 ramtcl 16711 ramub1lem1 16727 xpsfrnel 17273 gexlem2 19187 frgpuptinv 19377 frgpup3lem 19383 gsummpt1n0 19566 dprdfid 19620 dpjrid 19665 sdrgacs 20069 abvtrivd 20100 znf1o 20759 znhash 20766 znunithash 20772 mplsubrg 21211 mamulid 21590 mamurid 21591 dmatid 21644 dmatmulcl 21649 scmatdmat 21664 mdetdiagid 21749 chpdmatlem2 21988 chpscmat 21991 chpidmat 21996 xkoccn 22770 iccpnfhmeo 24108 xrhmeo 24109 ioorinv2 24739 mbfi1fseqlem4 24883 ellimc2 25041 dvcobr 25110 ply1remlem 25327 dvtaylp 25529 0cxp 25821 lgsval3 26463 lgsdinn0 26493 dchrisumlem1 26637 dchrvmasumiflem1 26649 rpvmasum2 26660 dchrvmasumlem 26671 padicabv 26778 indispconn 33196 ex-sategoelel 33383 fnejoin1 34557 ptrecube 35777 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 fdc 35903 cdlemk40f 38933 blenn0 45919 |
Copyright terms: Public domain | W3C validator |