![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4533 directly in this case. It happens, e.g., in oevn0 8529. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2936 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4533 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ≠ wne 2935 ifcif 4524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-if 4525 |
This theorem is referenced by: xpima2 6182 axcc2lem 10451 xnegmnf 13213 rexneg 13214 xaddpnf1 13229 xaddpnf2 13230 xaddmnf1 13231 xaddmnf2 13232 mnfaddpnf 13234 rexadd 13235 fztpval 13587 sadcp1 16421 smupp1 16446 pcval 16804 ramtcl 16970 ramub1lem1 16986 xpsfrnel 17535 gexlem2 19528 frgpuptinv 19717 frgpup3lem 19723 gsummpt1n0 19911 dprdfid 19965 dpjrid 20010 sdrgacs 20678 abvtrivd 20709 znf1o 21472 znhash 21479 znunithash 21485 mplsubrg 21934 psdmul 22077 mamulid 22330 mamurid 22331 dmatid 22384 dmatmulcl 22389 scmatdmat 22404 mdetdiagid 22489 chpdmatlem2 22728 chpscmat 22731 chpidmat 22736 xkoccn 23510 iccpnfhmeo 24857 xrhmeo 24858 ioorinv2 25491 mbfi1fseqlem4 25635 ellimc2 25793 dvcobr 25864 dvcobrOLD 25865 ply1remlem 26086 dvtaylp 26292 0cxp 26587 lgsval3 27235 lgsdinn0 27265 dchrisumlem1 27409 dchrvmasumiflem1 27421 rpvmasum2 27432 dchrvmasumlem 27443 padicabv 27550 indispconn 34780 ex-sategoelel 34967 fnejoin1 35788 ptrecube 37028 poimirlem16 37044 poimirlem17 37045 poimirlem19 37047 poimirlem20 37048 fdc 37153 cdlemk40f 40329 blenn0 47569 |
Copyright terms: Public domain | W3C validator |