Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4465 directly in this case. It happens, e.g., in oevn0 8307. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4465 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-if 4457 |
This theorem is referenced by: xpima2 6076 axcc2lem 10123 xnegmnf 12873 rexneg 12874 xaddpnf1 12889 xaddpnf2 12890 xaddmnf1 12891 xaddmnf2 12892 mnfaddpnf 12894 rexadd 12895 fztpval 13247 sadcp1 16090 smupp1 16115 pcval 16473 ramtcl 16639 ramub1lem1 16655 xpsfrnel 17190 gexlem2 19102 frgpuptinv 19292 frgpup3lem 19298 gsummpt1n0 19481 dprdfid 19535 dpjrid 19580 sdrgacs 19984 abvtrivd 20015 znf1o 20671 znhash 20678 znunithash 20684 mplsubrg 21121 mamulid 21498 mamurid 21499 dmatid 21552 dmatmulcl 21557 scmatdmat 21572 mdetdiagid 21657 chpdmatlem2 21896 chpscmat 21899 chpidmat 21904 xkoccn 22678 iccpnfhmeo 24014 xrhmeo 24015 ioorinv2 24644 mbfi1fseqlem4 24788 ellimc2 24946 dvcobr 25015 ply1remlem 25232 dvtaylp 25434 0cxp 25726 lgsval3 26368 lgsdinn0 26398 dchrisumlem1 26542 dchrvmasumiflem1 26554 rpvmasum2 26565 dchrvmasumlem 26576 padicabv 26683 indispconn 33096 ex-sategoelel 33283 fnejoin1 34484 ptrecube 35704 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 fdc 35830 cdlemk40f 38860 blenn0 45807 |
Copyright terms: Public domain | W3C validator |