![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4394 directly in this case. It happens, e.g., in oevn0 7996. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2985 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4394 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 218 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1522 ≠ wne 2984 ifcif 4385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-ne 2985 df-if 4386 |
This theorem is referenced by: xpima2 5922 axcc2lem 9709 xnegmnf 12458 rexneg 12459 xaddpnf1 12474 xaddpnf2 12475 xaddmnf1 12476 xaddmnf2 12477 mnfaddpnf 12479 rexadd 12480 fztpval 12824 sadcp1 15642 smupp1 15667 pcval 16015 ramtcl 16180 ramub1lem1 16196 xpsfrnel 16669 gexlem2 18442 frgpuptinv 18629 frgpup3lem 18635 gsummpt1n0 18810 dprdfid 18861 dpjrid 18906 sdrgacs 19275 abvtrivd 19306 mplsubrg 19913 znf1o 20385 znhash 20392 znunithash 20398 mamulid 20739 mamurid 20740 dmatid 20793 dmatmulcl 20798 scmatdmat 20813 mdetdiagid 20898 chpdmatlem2 21136 chpscmat 21139 chpidmat 21144 xkoccn 21916 iccpnfhmeo 23237 xrhmeo 23238 ioorinv2 23864 mbfi1fseqlem4 24007 ellimc2 24163 dvcobr 24231 ply1remlem 24444 dvtaylp 24646 0cxp 24935 lgsval3 25578 lgsdinn0 25608 dchrisumlem1 25752 dchrvmasumiflem1 25764 rpvmasum2 25775 dchrvmasumlem 25786 padicabv 25893 indispconn 32095 ex-sategoelel 32282 fnejoin1 33331 ptrecube 34448 poimirlem16 34464 poimirlem17 34465 poimirlem19 34467 poimirlem20 34468 fdc 34577 cdlemk40f 37611 blenn0 44140 |
Copyright terms: Public domain | W3C validator |