| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version | ||
| Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4482 directly in this case. It happens, e.g., in oevn0 8425. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | iffalse 4482 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2926 ifcif 4473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-if 4474 |
| This theorem is referenced by: xpima2 6128 axcc2lem 10319 xnegmnf 13101 rexneg 13102 xaddpnf1 13117 xaddpnf2 13118 xaddmnf1 13119 xaddmnf2 13120 mnfaddpnf 13122 rexadd 13123 fztpval 13478 sadcp1 16358 smupp1 16383 pcval 16748 ramtcl 16914 ramub1lem1 16930 xpsfrnel 17458 gexlem2 19487 frgpuptinv 19676 frgpup3lem 19682 gsummpt1n0 19870 dprdfid 19924 dpjrid 19969 sdrgacs 20709 abvtrivd 20740 znf1o 21481 znhash 21488 znunithash 21494 mplsubrg 21935 psdmul 22074 mamulid 22349 mamurid 22350 dmatid 22403 dmatmulcl 22408 scmatdmat 22423 mdetdiagid 22508 chpdmatlem2 22747 chpscmat 22750 chpidmat 22755 xkoccn 23527 iccpnfhmeo 24863 xrhmeo 24864 ioorinv2 25496 mbfi1fseqlem4 25639 ellimc2 25798 dvcobr 25869 dvcobrOLD 25870 ply1remlem 26090 dvtaylp 26298 0cxp 26595 lgsval3 27246 lgsdinn0 27276 dchrisumlem1 27420 dchrvmasumiflem1 27432 rpvmasum2 27443 dchrvmasumlem 27454 padicabv 27561 indispconn 35246 ex-sategoelel 35433 fnejoin1 36381 ptrecube 37639 poimirlem16 37655 poimirlem17 37656 poimirlem19 37658 poimirlem20 37659 fdc 37764 cdlemk40f 40937 fiabv 42548 blenn0 48584 |
| Copyright terms: Public domain | W3C validator |