| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version | ||
| Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4487 directly in this case. It happens, e.g., in oevn0 8440. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | iffalse 4487 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-if 4479 |
| This theorem is referenced by: xpima2 6137 axcc2lem 10349 xnegmnf 13130 rexneg 13131 xaddpnf1 13146 xaddpnf2 13147 xaddmnf1 13148 xaddmnf2 13149 mnfaddpnf 13151 rexadd 13152 fztpval 13507 sadcp1 16384 smupp1 16409 pcval 16774 ramtcl 16940 ramub1lem1 16956 xpsfrnel 17484 gexlem2 19479 frgpuptinv 19668 frgpup3lem 19674 gsummpt1n0 19862 dprdfid 19916 dpjrid 19961 sdrgacs 20704 abvtrivd 20735 znf1o 21476 znhash 21483 znunithash 21489 mplsubrg 21930 psdmul 22069 mamulid 22344 mamurid 22345 dmatid 22398 dmatmulcl 22403 scmatdmat 22418 mdetdiagid 22503 chpdmatlem2 22742 chpscmat 22745 chpidmat 22750 xkoccn 23522 iccpnfhmeo 24859 xrhmeo 24860 ioorinv2 25492 mbfi1fseqlem4 25635 ellimc2 25794 dvcobr 25865 dvcobrOLD 25866 ply1remlem 26086 dvtaylp 26294 0cxp 26591 lgsval3 27242 lgsdinn0 27272 dchrisumlem1 27416 dchrvmasumiflem1 27428 rpvmasum2 27439 dchrvmasumlem 27450 padicabv 27557 indispconn 35206 ex-sategoelel 35393 fnejoin1 36341 ptrecube 37599 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 fdc 37724 cdlemk40f 40898 fiabv 42509 blenn0 48546 |
| Copyright terms: Public domain | W3C validator |