Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifsb | Structured version Visualization version GIF version |
Description: Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013.) |
Ref | Expression |
---|---|
ifsb.1 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) |
ifsb.2 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
ifsb | ⊢ 𝐶 = if(𝜑, 𝐷, 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4462 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | ifsb.1 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) |
4 | iftrue 4462 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐷) | |
5 | 3, 4 | eqtr4d 2781 | . 2 ⊢ (𝜑 → 𝐶 = if(𝜑, 𝐷, 𝐸)) |
6 | iffalse 4465 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
7 | ifsb.2 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (¬ 𝜑 → 𝐶 = 𝐸) |
9 | iffalse 4465 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐸) | |
10 | 8, 9 | eqtr4d 2781 | . 2 ⊢ (¬ 𝜑 → 𝐶 = if(𝜑, 𝐷, 𝐸)) |
11 | 5, 10 | pm2.61i 182 | 1 ⊢ 𝐶 = if(𝜑, 𝐷, 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: fvif 6772 iffv 6773 ovif 7350 ovif2 7351 ifov 7353 xmulneg1 12932 efrlim 26024 lgsneg 26374 lgsdilem 26377 rpvmasum2 26565 |
Copyright terms: Public domain | W3C validator |