MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifsb Structured version   Visualization version   GIF version

Theorem ifsb 4488
Description: Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013.)
Hypotheses
Ref Expression
ifsb.1 (if(𝜑, 𝐴, 𝐵) = 𝐴𝐶 = 𝐷)
ifsb.2 (if(𝜑, 𝐴, 𝐵) = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
ifsb 𝐶 = if(𝜑, 𝐷, 𝐸)

Proof of Theorem ifsb
StepHypRef Expression
1 iftrue 4480 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
2 ifsb.1 . . . 4 (if(𝜑, 𝐴, 𝐵) = 𝐴𝐶 = 𝐷)
31, 2syl 17 . . 3 (𝜑𝐶 = 𝐷)
4 iftrue 4480 . . 3 (𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐷)
53, 4eqtr4d 2769 . 2 (𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
6 iffalse 4483 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
7 ifsb.2 . . . 4 (if(𝜑, 𝐴, 𝐵) = 𝐵𝐶 = 𝐸)
86, 7syl 17 . . 3 𝜑𝐶 = 𝐸)
9 iffalse 4483 . . 3 𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐸)
108, 9eqtr4d 2769 . 2 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
115, 10pm2.61i 182 1 𝐶 = if(𝜑, 𝐷, 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  ifcif 4474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-if 4475
This theorem is referenced by:  fvif  6844  iffv  6845  ovif  7450  ovif2  7451  ifov  7453  xmulneg1  13174  efrlim  26912  efrlimOLD  26913  lgsneg  27265  lgsdilem  27268  rpvmasum2  27456
  Copyright terms: Public domain W3C validator