| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | 1 | necon2bd 2948 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: iftrueb 4513 om00 8587 pw2f1olem 9090 xlt2add 13276 hashfun 14455 hashtpg 14503 fsumcl2lem 15747 fprodcl2lem 15966 gcdeq0 16536 lcmeq0 16619 lcmfeq0b 16649 phibndlem 16789 abvn0b 20796 cfinufil 23866 isxmet2d 24266 i1fres 25658 tdeglem4 26017 ply1domn 26081 pilem2 26414 isnsqf 27097 ppieq0 27138 chpeq0 27171 chteq0 27172 ltrnatlw 40202 bcc0 44364 |
| Copyright terms: Public domain | W3C validator |