| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | 1 | necon2bd 2941 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: iftrueb 4491 om00 8500 pw2f1olem 9005 xlt2add 13180 hashfun 14362 hashtpg 14410 fsumcl2lem 15656 fprodcl2lem 15875 gcdeq0 16446 lcmeq0 16529 lcmfeq0b 16559 phibndlem 16699 abvn0b 20739 cfinufil 23831 isxmet2d 24231 i1fres 25622 tdeglem4 25981 ply1domn 26045 pilem2 26378 isnsqf 27061 ppieq0 27102 chpeq0 27135 chteq0 27136 ltrnatlw 40162 bcc0 44313 |
| Copyright terms: Public domain | W3C validator |