Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
2 | 1 | necon2bd 2957 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: om00 8437 pw2f1olem 8901 xlt2add 13044 hashfun 14201 hashtpg 14248 fsumcl2lem 15492 fprodcl2lem 15709 gcdeq0 16273 lcmeq0 16354 lcmfeq0b 16384 phibndlem 16520 abvn0b 20622 cfinufil 23128 isxmet2d 23529 i1fres 24919 tdeglem4 25273 tdeglem4OLD 25274 ply1domn 25337 pilem2 25660 isnsqf 26333 ppieq0 26374 chpeq0 26405 chteq0 26406 ltrnatlw 38397 bcc0 42171 |
Copyright terms: Public domain | W3C validator |