| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | 1 | necon2bd 2944 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: iftrueb 4488 om00 8490 pw2f1olem 8994 xlt2add 13159 hashfun 14344 hashtpg 14392 fsumcl2lem 15638 fprodcl2lem 15857 gcdeq0 16428 lcmeq0 16511 lcmfeq0b 16541 phibndlem 16681 abvn0b 20752 cfinufil 23844 isxmet2d 24243 i1fres 25634 tdeglem4 25993 ply1domn 26057 pilem2 26390 isnsqf 27073 ppieq0 27114 chpeq0 27147 chteq0 27148 ltrnatlw 40228 bcc0 44379 |
| Copyright terms: Public domain | W3C validator |