![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
2 | 1 | necon2bd 2956 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: om00 8577 pw2f1olem 9078 xlt2add 13241 hashfun 14399 hashtpg 14448 fsumcl2lem 15679 fprodcl2lem 15896 gcdeq0 16460 lcmeq0 16539 lcmfeq0b 16569 phibndlem 16705 abvn0b 20926 cfinufil 23439 isxmet2d 23840 i1fres 25230 tdeglem4 25584 tdeglem4OLD 25585 ply1domn 25648 pilem2 25971 isnsqf 26646 ppieq0 26687 chpeq0 26718 chteq0 26719 ltrnatlw 39140 bcc0 43181 |
Copyright terms: Public domain | W3C validator |