MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4bd Structured version   Visualization version   GIF version

Theorem necon4bd 2961
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon4bd.1 (𝜑 → (¬ 𝜓𝐴𝐵))
Assertion
Ref Expression
necon4bd (𝜑 → (𝐴 = 𝐵𝜓))

Proof of Theorem necon4bd
StepHypRef Expression
1 necon4bd.1 . . 3 (𝜑 → (¬ 𝜓𝐴𝐵))
21necon2bd 2957 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓))
3 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
42, 3syl6 35 1 (𝜑 → (𝐴 = 𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2942
This theorem is referenced by:  om00  8575  pw2f1olem  9076  xlt2add  13239  hashfun  14397  hashtpg  14446  fsumcl2lem  15677  fprodcl2lem  15894  gcdeq0  16458  lcmeq0  16537  lcmfeq0b  16567  phibndlem  16703  abvn0b  20920  cfinufil  23432  isxmet2d  23833  i1fres  25223  tdeglem4  25577  tdeglem4OLD  25578  ply1domn  25641  pilem2  25964  isnsqf  26639  ppieq0  26680  chpeq0  26711  chteq0  26712  ltrnatlw  39054  bcc0  43099
  Copyright terms: Public domain W3C validator