MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4bd Structured version   Visualization version   GIF version

Theorem necon4bd 2963
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon4bd.1 (𝜑 → (¬ 𝜓𝐴𝐵))
Assertion
Ref Expression
necon4bd (𝜑 → (𝐴 = 𝐵𝜓))

Proof of Theorem necon4bd
StepHypRef Expression
1 necon4bd.1 . . 3 (𝜑 → (¬ 𝜓𝐴𝐵))
21necon2bd 2959 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓))
3 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
42, 3syl6 35 1 (𝜑 → (𝐴 = 𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  om00  8394  pw2f1olem  8851  xlt2add  12982  hashfun  14140  hashtpg  14187  fsumcl2lem  15431  fprodcl2lem  15648  gcdeq0  16212  lcmeq0  16293  lcmfeq0b  16323  phibndlem  16459  abvn0b  20561  cfinufil  23067  isxmet2d  23468  i1fres  24858  tdeglem4  25212  tdeglem4OLD  25213  ply1domn  25276  pilem2  25599  isnsqf  26272  ppieq0  26313  chpeq0  26344  chteq0  26345  ltrnatlw  38183  bcc0  41917
  Copyright terms: Public domain W3C validator