MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4bd Structured version   Visualization version   GIF version

Theorem necon4bd 2945
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon4bd.1 (𝜑 → (¬ 𝜓𝐴𝐵))
Assertion
Ref Expression
necon4bd (𝜑 → (𝐴 = 𝐵𝜓))

Proof of Theorem necon4bd
StepHypRef Expression
1 necon4bd.1 . . 3 (𝜑 → (¬ 𝜓𝐴𝐵))
21necon2bd 2941 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓))
3 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
42, 3syl6 35 1 (𝜑 → (𝐴 = 𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  iftrueb  4501  om00  8539  pw2f1olem  9045  xlt2add  13220  hashfun  14402  hashtpg  14450  fsumcl2lem  15697  fprodcl2lem  15916  gcdeq0  16487  lcmeq0  16570  lcmfeq0b  16600  phibndlem  16740  abvn0b  20745  cfinufil  23815  isxmet2d  24215  i1fres  25606  tdeglem4  25965  ply1domn  26029  pilem2  26362  isnsqf  27045  ppieq0  27086  chpeq0  27119  chteq0  27120  ltrnatlw  40177  bcc0  44329
  Copyright terms: Public domain W3C validator