Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
2 | 1 | necon2bd 2960 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: om00 8382 pw2f1olem 8832 xlt2add 12976 hashfun 14133 hashtpg 14180 fsumcl2lem 15424 fprodcl2lem 15641 gcdeq0 16205 lcmeq0 16286 lcmfeq0b 16316 phibndlem 16452 abvn0b 20554 cfinufil 23060 isxmet2d 23461 i1fres 24851 tdeglem4 25205 tdeglem4OLD 25206 ply1domn 25269 pilem2 25592 isnsqf 26265 ppieq0 26306 chpeq0 26337 chteq0 26338 ltrnatlw 38176 bcc0 41911 |
Copyright terms: Public domain | W3C validator |