| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | 1 | necon2bd 2941 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: iftrueb 4501 om00 8539 pw2f1olem 9045 xlt2add 13220 hashfun 14402 hashtpg 14450 fsumcl2lem 15697 fprodcl2lem 15916 gcdeq0 16487 lcmeq0 16570 lcmfeq0b 16600 phibndlem 16740 abvn0b 20745 cfinufil 23815 isxmet2d 24215 i1fres 25606 tdeglem4 25965 ply1domn 26029 pilem2 26362 isnsqf 27045 ppieq0 27086 chpeq0 27119 chteq0 27120 ltrnatlw 40177 bcc0 44329 |
| Copyright terms: Public domain | W3C validator |