Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
2 | 1 | necon2bd 2959 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: om00 8394 pw2f1olem 8851 xlt2add 12982 hashfun 14140 hashtpg 14187 fsumcl2lem 15431 fprodcl2lem 15648 gcdeq0 16212 lcmeq0 16293 lcmfeq0b 16323 phibndlem 16459 abvn0b 20561 cfinufil 23067 isxmet2d 23468 i1fres 24858 tdeglem4 25212 tdeglem4OLD 25213 ply1domn 25276 pilem2 25599 isnsqf 26272 ppieq0 26313 chpeq0 26344 chteq0 26345 ltrnatlw 38183 bcc0 41917 |
Copyright terms: Public domain | W3C validator |