![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
2 | 1 | necon2bd 2954 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: om00 8612 pw2f1olem 9115 xlt2add 13299 hashfun 14473 hashtpg 14521 fsumcl2lem 15764 fprodcl2lem 15983 gcdeq0 16551 lcmeq0 16634 lcmfeq0b 16664 phibndlem 16804 abvn0b 20854 cfinufil 23952 isxmet2d 24353 i1fres 25755 tdeglem4 26114 ply1domn 26178 pilem2 26511 isnsqf 27193 ppieq0 27234 chpeq0 27267 chteq0 27268 ltrnatlw 40166 bcc0 44336 |
Copyright terms: Public domain | W3C validator |