| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4bd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon4bd | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4bd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | 1 | necon2bd 2942 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: iftrueb 4504 om00 8542 pw2f1olem 9050 xlt2add 13227 hashfun 14409 hashtpg 14457 fsumcl2lem 15704 fprodcl2lem 15923 gcdeq0 16494 lcmeq0 16577 lcmfeq0b 16607 phibndlem 16747 abvn0b 20752 cfinufil 23822 isxmet2d 24222 i1fres 25613 tdeglem4 25972 ply1domn 26036 pilem2 26369 isnsqf 27052 ppieq0 27093 chpeq0 27126 chteq0 27127 ltrnatlw 40184 bcc0 44336 |
| Copyright terms: Public domain | W3C validator |