MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4bd Structured version   Visualization version   GIF version

Theorem necon4bd 2945
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon4bd.1 (𝜑 → (¬ 𝜓𝐴𝐵))
Assertion
Ref Expression
necon4bd (𝜑 → (𝐴 = 𝐵𝜓))

Proof of Theorem necon4bd
StepHypRef Expression
1 necon4bd.1 . . 3 (𝜑 → (¬ 𝜓𝐴𝐵))
21necon2bd 2941 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ ¬ 𝜓))
3 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
42, 3syl6 35 1 (𝜑 → (𝐴 = 𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  iftrueb  4491  om00  8500  pw2f1olem  9005  xlt2add  13180  hashfun  14362  hashtpg  14410  fsumcl2lem  15656  fprodcl2lem  15875  gcdeq0  16446  lcmeq0  16529  lcmfeq0b  16559  phibndlem  16699  abvn0b  20739  cfinufil  23831  isxmet2d  24231  i1fres  25622  tdeglem4  25981  ply1domn  26045  pilem2  26378  isnsqf  27061  ppieq0  27102  chpeq0  27135  chteq0  27136  ltrnatlw  40162  bcc0  44313
  Copyright terms: Public domain W3C validator