MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2dv Structured version   Visualization version   GIF version

Theorem iineq2dv 5017
Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iineq2dv (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iineq2dv
StepHypRef Expression
1 iuneq2dv.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3146 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 iineq2 5012 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
42, 3syl 17 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-iin 4994
This theorem is referenced by:  cntziinsn  19355  ptbasfi  23589  fclsval  24016  taylfval  26400  polfvalN  39906  dihglblem3N  41297  dihmeetlem2N  41301  iineq12dv  45111  iccvonmbllem  46693  vonicclem2  46699  smflimlem3  46788  smflimlem4  46789  smflimlem6  46791  smflimsuplem3  46837
  Copyright terms: Public domain W3C validator