MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2dv Structured version   Visualization version   GIF version

Theorem iineq2dv 4955
Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iineq2dv (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iineq2dv
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 iuneq2dv.1 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
31, 2iineq2d 4953 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1538  wcel 2103   ciin 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-12 2168  ax-ext 2706
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2713  df-cleq 2727  df-clel 2813  df-ral 3061  df-iin 4933
This theorem is referenced by:  cntziinsn  19000  ptbasfi  22795  fclsval  23222  taylfval  25581  polfvalN  38128  dihglblem3N  39519  dihmeetlem2N  39523  iineq12dv  42882  saliincl  44108  iccvonmbllem  44459  vonicclem2  44465  smflimlem3  44554  smflimlem4  44555  smflimlem6  44557  smflimsuplem3  44603
  Copyright terms: Public domain W3C validator