Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iineq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iineq2dv | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | iuneq2dv.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
3 | 1, 2 | iineq2d 4953 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1538 ∈ wcel 2103 ∩ ciin 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-12 2168 ax-ext 2706 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2713 df-cleq 2727 df-clel 2813 df-ral 3061 df-iin 4933 |
This theorem is referenced by: cntziinsn 19000 ptbasfi 22795 fclsval 23222 taylfval 25581 polfvalN 38128 dihglblem3N 39519 dihmeetlem2N 39523 iineq12dv 42882 saliincl 44108 iccvonmbllem 44459 vonicclem2 44465 smflimlem3 44554 smflimlem4 44555 smflimlem6 44557 smflimsuplem3 44603 |
Copyright terms: Public domain | W3C validator |