MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2dv Structured version   Visualization version   GIF version

Theorem iineq2dv 4946
Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iineq2dv (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iineq2dv
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
2 iuneq2dv.1 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
31, 2iineq2d 4944 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-iin 4924
This theorem is referenced by:  cntziinsn  18856  ptbasfi  22640  fclsval  23067  taylfval  25423  polfvalN  37845  dihglblem3N  39236  dihmeetlem2N  39240  iineq12dv  42545  saliincl  43756  iccvonmbllem  44106  vonicclem2  44112  smflimlem3  44195  smflimlem4  44196  smflimlem6  44198  smflimsuplem3  44242
  Copyright terms: Public domain W3C validator