Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq1d Structured version   Visualization version   GIF version

Theorem iineq1d 42529
Description: Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
iineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
iineq1d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem iineq1d
StepHypRef Expression
1 iineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 iineq1 4938 . 2 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
31, 2syl 17 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-ral 3068  df-iin 4924
This theorem is referenced by:  iineq12dv  42545  smflimlem2  44194  smflimlem3  44195  smflimlem4  44196  smflim2  44226  smflimsuplem1  44240  smflimsuplem7  44246  smflimsup  44248  smfliminf  44251
  Copyright terms: Public domain W3C validator