Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq1d Structured version   Visualization version   GIF version

Theorem iineq1d 41221
 Description: Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
iineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
iineq1d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem iineq1d
StepHypRef Expression
1 iineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 iineq1 4933 . 2 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
31, 2syl 17 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1530  ∩ ciin 4918 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-ral 3148  df-iin 4920 This theorem is referenced by:  iineq12dv  41238  smflimlem2  42914  smflimlem3  42915  smflimlem4  42916  smflim2  42946  smflimsuplem1  42960  smflimsuplem7  42966  smflimsup  42968  smfliminf  42971
 Copyright terms: Public domain W3C validator