Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim Structured version   Visualization version   GIF version

Theorem smflim 46889
Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflim.n 𝑚𝐹
smflim.x 𝑥𝐹
smflim.m (𝜑𝑀 ∈ ℤ)
smflim.z 𝑍 = (ℤ𝑀)
smflim.s (𝜑𝑆 ∈ SAlg)
smflim.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑆,𝑚,𝑛   𝑚,𝑍,𝑥,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim
Dummy variables 𝑖 𝑗 𝑙 𝑦 𝑘 𝑠 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑎𝜑
2 smflim.s . 2 (𝜑𝑆 ∈ SAlg)
3 smflim.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
4 nfcv 2896 . . . . . . 7 𝑥𝑍
5 nfcv 2896 . . . . . . . 8 𝑥(ℤ𝑛)
6 smflim.x . . . . . . . . . 10 𝑥𝐹
7 nfcv 2896 . . . . . . . . . 10 𝑥𝑚
86, 7nffv 6841 . . . . . . . . 9 𝑥(𝐹𝑚)
98nfdm 5898 . . . . . . . 8 𝑥dom (𝐹𝑚)
105, 9nfiin 4976 . . . . . . 7 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
114, 10nfiun 4975 . . . . . 6 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1211ssrab2f 45228 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
133, 12eqsstri 3978 . . . 4 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1413a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
15 uzssz 12763 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
16 smflim.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
1716eleq2i 2825 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 216 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1915, 18sselid 3929 . . . . . . . 8 (𝑛𝑍𝑛 ∈ ℤ)
20 uzid 12757 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2119, 20syl 17 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221adantl 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
232adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
24 smflim.f . . . . . . . 8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2524ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
26 eqid 2733 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2723, 25, 26smfdmss 46845 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ⊆ 𝑆)
28 smflim.n . . . . . . . . . 10 𝑚𝐹
29 nfcv 2896 . . . . . . . . . 10 𝑚𝑛
3028, 29nffv 6841 . . . . . . . . 9 𝑚(𝐹𝑛)
3130nfdm 5898 . . . . . . . 8 𝑚dom (𝐹𝑛)
32 nfcv 2896 . . . . . . . 8 𝑚 𝑆
3331, 32nfss 3924 . . . . . . 7 𝑚dom (𝐹𝑛) ⊆ 𝑆
34 fveq2 6831 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3534dmeqd 5852 . . . . . . . 8 (𝑚 = 𝑛 → dom (𝐹𝑚) = dom (𝐹𝑛))
3635sseq1d 3963 . . . . . . 7 (𝑚 = 𝑛 → (dom (𝐹𝑚) ⊆ 𝑆 ↔ dom (𝐹𝑛) ⊆ 𝑆))
3733, 36rspce 3563 . . . . . 6 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐹𝑛) ⊆ 𝑆) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
3822, 27, 37syl2anc 584 . . . . 5 ((𝜑𝑛𝑍) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
39 iinss 5009 . . . . 5 (∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4038, 39syl 17 . . . 4 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4140iunssd 5003 . . 3 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4214, 41sstrd 3942 . 2 (𝜑𝐷 𝑆)
43 nfv 1915 . . . . 5 𝑚𝜑
44 nfcv 2896 . . . . . 6 𝑚𝑦
45 nfmpt1 5194 . . . . . . . . 9 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
46 nfcv 2896 . . . . . . . . 9 𝑚dom ⇝
4745, 46nfel 2911 . . . . . . . 8 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
48 nfcv 2896 . . . . . . . . 9 𝑚𝑍
49 nfii1 4981 . . . . . . . . 9 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5048, 49nfiun 4975 . . . . . . . 8 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5147, 50nfrabw 3434 . . . . . . 7 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
523, 51nfcxfr 2894 . . . . . 6 𝑚𝐷
5344, 52nfel 2911 . . . . 5 𝑚 𝑦𝐷
5443, 53nfan 1900 . . . 4 𝑚(𝜑𝑦𝐷)
55 nfcv 2896 . . . 4 𝑤𝐹
562adantr 480 . . . . . 6 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
5724ffvelcdmda 7026 . . . . . 6 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
58 eqid 2733 . . . . . 6 dom (𝐹𝑚) = dom (𝐹𝑚)
5956, 57, 58smff 46844 . . . . 5 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
6059adantlr 715 . . . 4 (((𝜑𝑦𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
61 nfcv 2896 . . . . . . 7 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
62 nfv 1915 . . . . . . 7 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
63 nfcv 2896 . . . . . . . . . 10 𝑥𝑦
648, 63nffv 6841 . . . . . . . . 9 𝑥((𝐹𝑚)‘𝑦)
654, 64nfmpt 5193 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
6665nfel1 2913 . . . . . . 7 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
67 fveq2 6831 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6867mpteq2dv 5189 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
6968eleq1d 2818 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
7011, 61, 62, 66, 69cbvrabw 3432 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
71 nfcv 2896 . . . . . . . . . . . . 13 𝑙dom (𝐹𝑚)
72 nfcv 2896 . . . . . . . . . . . . . . 15 𝑚𝑙
7328, 72nffv 6841 . . . . . . . . . . . . . 14 𝑚(𝐹𝑙)
7473nfdm 5898 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑙)
75 fveq2 6831 . . . . . . . . . . . . . 14 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
7675dmeqd 5852 . . . . . . . . . . . . 13 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
7771, 74, 76cbviin 4988 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
7877a1i 11 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
79 fveq2 6831 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
80 eqidd 2734 . . . . . . . . . . . 12 ((𝑛 = 𝑖𝑙 ∈ (ℤ𝑖)) → dom (𝐹𝑙) = dom (𝐹𝑙))
8179, 80iineq12dv 45217 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8278, 81eqtrd 2768 . . . . . . . . . 10 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8382cbviunv 4991 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙)
8483eleq2i 2825 . . . . . . . 8 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
85 nfcv 2896 . . . . . . . . . 10 𝑙𝑍
86 nfcv 2896 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑦)
8773, 44nffv 6841 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑦)
8875fveq1d 6833 . . . . . . . . . 10 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑙)‘𝑦))
8948, 85, 86, 87, 88cbvmptf 5195 . . . . . . . . 9 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
9089eleq1i 2824 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ )
9184, 90anbi12i 628 . . . . . . 7 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ))
9291rabbia2 3400 . . . . . 6 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
933, 70, 923eqtri 2760 . . . . 5 𝐷 = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
94 fveq2 6831 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑤))
9594mpteq2dv 5189 . . . . . . . 8 (𝑦 = 𝑤 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)))
9695eleq1d 2818 . . . . . . 7 (𝑦 = 𝑤 → ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ))
9796cbvrabv 3407 . . . . . 6 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ }
98 fveq2 6831 . . . . . . . . . . . . 13 (𝑙 = 𝑚 → (𝐹𝑙) = (𝐹𝑚))
9998dmeqd 5852 . . . . . . . . . . . 12 (𝑙 = 𝑚 → dom (𝐹𝑙) = dom (𝐹𝑚))
10074, 71, 99cbviin 4988 . . . . . . . . . . 11 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
101100a1i 11 . . . . . . . . . 10 (𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
102101iuneq2i 4965 . . . . . . . . 9 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
103102eleq2i 2825 . . . . . . . 8 (𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ↔ 𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
104 nfcv 2896 . . . . . . . . . . 11 𝑚𝑤
10573, 104nffv 6841 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑤)
106 nfcv 2896 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑤)
10798fveq1d 6833 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑤) = ((𝐹𝑚)‘𝑤))
10885, 48, 105, 106, 107cbvmptf 5195 . . . . . . . . 9 (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
109108eleq1i 2824 . . . . . . . 8 ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ )
110103, 109anbi12i 628 . . . . . . 7 ((𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ) ↔ (𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ ))
111110rabbia2 3400 . . . . . 6 {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11297, 111eqtri 2756 . . . . 5 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11393, 112eqtri 2756 . . . 4 𝐷 = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
114 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
11554, 28, 55, 16, 60, 113, 114fnlimfvre 45786 . . 3 ((𝜑𝑦𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))) ∈ ℝ)
116 smflim.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
117 nfrab1 3417 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
1183, 117nfcxfr 2894 . . . . 5 𝑥𝐷
119 nfcv 2896 . . . . 5 𝑦𝐷
120 nfcv 2896 . . . . 5 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
121 nfcv 2896 . . . . . 6 𝑥
122121, 65nffv 6841 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
12368fveq2d 6835 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
124118, 119, 120, 122, 123cbvmptf 5195 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
125116, 124eqtri 2756 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
126115, 125fmptd 7056 . 2 (𝜑𝐺:𝐷⟶ℝ)
127 smflim.m . . . 4 (𝜑𝑀 ∈ ℤ)
128127adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
1292adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
13024adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
131 nfcv 2896 . . . . . . . . 9 𝑥𝑙
1326, 131nffv 6841 . . . . . . . 8 𝑥(𝐹𝑙)
133132, 63nffv 6841 . . . . . . 7 𝑥((𝐹𝑙)‘𝑦)
1344, 133nfmpt 5193 . . . . . 6 𝑥(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
135121, 134nffv 6841 . . . . 5 𝑥( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
136 nfcv 2896 . . . . . . . . 9 𝑙((𝐹𝑚)‘𝑥)
137 nfcv 2896 . . . . . . . . . 10 𝑚𝑥
13873, 137nffv 6841 . . . . . . . . 9 𝑚((𝐹𝑙)‘𝑥)
13975fveq1d 6833 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑙)‘𝑥))
14048, 85, 136, 138, 139cbvmptf 5195 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥))
141140a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)))
142 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑦𝑙𝑍) → 𝑥 = 𝑦)
143142fveq2d 6835 . . . . . . . 8 ((𝑥 = 𝑦𝑙𝑍) → ((𝐹𝑙)‘𝑥) = ((𝐹𝑙)‘𝑦))
144143mpteq2dva 5188 . . . . . . 7 (𝑥 = 𝑦 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
145141, 144eqtrd 2768 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
146145fveq2d 6835 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
147118, 119, 120, 135, 146cbvmptf 5195 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
148116, 147eqtri 2756 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
149 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
150 nfcv 2896 . . . . . . . . 9 𝑚 <
151 nfcv 2896 . . . . . . . . 9 𝑚(𝑎 + (1 / 𝑗))
15287, 150, 151nfbr 5142 . . . . . . . 8 𝑚((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
153152, 74nfrabw 3434 . . . . . . 7 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))}
154 nfcv 2896 . . . . . . . 8 𝑚𝑡
155154, 74nfin 4175 . . . . . . 7 𝑚(𝑡 ∩ dom (𝐹𝑙))
156153, 155nfeq 2910 . . . . . 6 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))
157 nfcv 2896 . . . . . 6 𝑚𝑆
158156, 157nfrabw 3434 . . . . 5 𝑚{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
159 nfcv 2896 . . . . 5 𝑘{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
160 nfcv 2896 . . . . 5 𝑙{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
161 nfcv 2896 . . . . 5 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
162 nfcv 2896 . . . . . . . . . . . 12 𝑦dom (𝐹𝑙)
163132nfdm 5898 . . . . . . . . . . . 12 𝑥dom (𝐹𝑙)
164 nfcv 2896 . . . . . . . . . . . . 13 𝑥 <
165 nfcv 2896 . . . . . . . . . . . . 13 𝑥(𝑎 + (1 / 𝑗))
166133, 164, 165nfbr 5142 . . . . . . . . . . . 12 𝑥((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
167 nfv 1915 . . . . . . . . . . . 12 𝑦((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))
168 fveq2 6831 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑥))
169168breq1d 5105 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))))
170162, 163, 166, 167, 169cbvrabw 3432 . . . . . . . . . . 11 {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))}
171170a1i 11 . . . . . . . . . 10 (𝑡 = 𝑠 → {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))})
172 ineq1 4164 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑡 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑙)))
173171, 172eqeq12d 2749 . . . . . . . . 9 (𝑡 = 𝑠 → ({𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))))
174173cbvrabv 3407 . . . . . . . 8 {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))}
175174a1i 11 . . . . . . 7 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))})
17699eleq2d 2819 . . . . . . . . . . 11 (𝑙 = 𝑚 → (𝑥 ∈ dom (𝐹𝑙) ↔ 𝑥 ∈ dom (𝐹𝑚)))
17798fveq1d 6833 . . . . . . . . . . . 12 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑥) = ((𝐹𝑚)‘𝑥))
178177breq1d 5105 . . . . . . . . . . 11 (𝑙 = 𝑚 → (((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))))
179176, 178anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑙) ∧ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)))))
180179rabbidva2 3399 . . . . . . . . 9 (𝑙 = 𝑚 → {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))})
18199ineq2d 4171 . . . . . . . . 9 (𝑙 = 𝑚 → (𝑠 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑚)))
182180, 181eqeq12d 2749 . . . . . . . 8 (𝑙 = 𝑚 → ({𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
183182rabbidv 3404 . . . . . . 7 (𝑙 = 𝑚 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
184175, 183eqtrd 2768 . . . . . 6 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
185 oveq2 7363 . . . . . . . . . . 11 (𝑗 = 𝑘 → (1 / 𝑗) = (1 / 𝑘))
186185oveq2d 7371 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑎 + (1 / 𝑗)) = (𝑎 + (1 / 𝑘)))
187186breq2d 5107 . . . . . . . . 9 (𝑗 = 𝑘 → (((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))))
188187rabbidv 3404 . . . . . . . 8 (𝑗 = 𝑘 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))})
189188eqeq1d 2735 . . . . . . 7 (𝑗 = 𝑘 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
190189rabbidv 3404 . . . . . 6 (𝑗 = 𝑘 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
191184, 190sylan9eq 2788 . . . . 5 ((𝑙 = 𝑚𝑗 = 𝑘) → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
192158, 159, 160, 161, 191cbvmpo 7449 . . . 4 (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
193192eqcomi 2742 . . 3 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))})
194128, 16, 129, 130, 93, 148, 149, 193smflimlem6 46888 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑦𝐷 ∣ (𝐺𝑦) ≤ 𝑎} ∈ (𝑆t 𝐷))
1951, 2, 42, 126, 194issmfled 46869 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2881  wrex 3058  {crab 3397  cin 3898  wss 3899   cuni 4860   ciun 4943   ciin 4944   class class class wbr 5095  cmpt 5176  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  cr 11015  1c1 11017   + caddc 11019   < clt 11156   / cdiv 11784  cn 12135  cz 12478  cuz 12742  cli 15401  SAlgcsalg 46420  SMblFncsmblfn 46807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-ioo 13259  df-ico 13261  df-fl 13706  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-rlim 15406  df-rest 17336  df-salg 46421  df-smblfn 46808
This theorem is referenced by:  smflim2  46918
  Copyright terms: Public domain W3C validator