Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim Structured version   Visualization version   GIF version

Theorem smflim 46775
Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflim.n 𝑚𝐹
smflim.x 𝑥𝐹
smflim.m (𝜑𝑀 ∈ ℤ)
smflim.z 𝑍 = (ℤ𝑀)
smflim.s (𝜑𝑆 ∈ SAlg)
smflim.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑆,𝑚,𝑛   𝑚,𝑍,𝑥,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim
Dummy variables 𝑖 𝑗 𝑙 𝑦 𝑘 𝑠 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑎𝜑
2 smflim.s . 2 (𝜑𝑆 ∈ SAlg)
3 smflim.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
4 nfcv 2891 . . . . . . 7 𝑥𝑍
5 nfcv 2891 . . . . . . . 8 𝑥(ℤ𝑛)
6 smflim.x . . . . . . . . . 10 𝑥𝐹
7 nfcv 2891 . . . . . . . . . 10 𝑥𝑚
86, 7nffv 6868 . . . . . . . . 9 𝑥(𝐹𝑚)
98nfdm 5915 . . . . . . . 8 𝑥dom (𝐹𝑚)
105, 9nfiin 4988 . . . . . . 7 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
114, 10nfiun 4987 . . . . . 6 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1211ssrab2f 45111 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
133, 12eqsstri 3993 . . . 4 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1413a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
15 uzssz 12814 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
16 smflim.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
1716eleq2i 2820 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 216 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1915, 18sselid 3944 . . . . . . . 8 (𝑛𝑍𝑛 ∈ ℤ)
20 uzid 12808 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2119, 20syl 17 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221adantl 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
232adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
24 smflim.f . . . . . . . 8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2524ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
26 eqid 2729 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2723, 25, 26smfdmss 46731 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ⊆ 𝑆)
28 smflim.n . . . . . . . . . 10 𝑚𝐹
29 nfcv 2891 . . . . . . . . . 10 𝑚𝑛
3028, 29nffv 6868 . . . . . . . . 9 𝑚(𝐹𝑛)
3130nfdm 5915 . . . . . . . 8 𝑚dom (𝐹𝑛)
32 nfcv 2891 . . . . . . . 8 𝑚 𝑆
3331, 32nfss 3939 . . . . . . 7 𝑚dom (𝐹𝑛) ⊆ 𝑆
34 fveq2 6858 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3534dmeqd 5869 . . . . . . . 8 (𝑚 = 𝑛 → dom (𝐹𝑚) = dom (𝐹𝑛))
3635sseq1d 3978 . . . . . . 7 (𝑚 = 𝑛 → (dom (𝐹𝑚) ⊆ 𝑆 ↔ dom (𝐹𝑛) ⊆ 𝑆))
3733, 36rspce 3577 . . . . . 6 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐹𝑛) ⊆ 𝑆) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
3822, 27, 37syl2anc 584 . . . . 5 ((𝜑𝑛𝑍) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
39 iinss 5020 . . . . 5 (∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4038, 39syl 17 . . . 4 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4140iunssd 5014 . . 3 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4214, 41sstrd 3957 . 2 (𝜑𝐷 𝑆)
43 nfv 1914 . . . . 5 𝑚𝜑
44 nfcv 2891 . . . . . 6 𝑚𝑦
45 nfmpt1 5206 . . . . . . . . 9 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
46 nfcv 2891 . . . . . . . . 9 𝑚dom ⇝
4745, 46nfel 2906 . . . . . . . 8 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
48 nfcv 2891 . . . . . . . . 9 𝑚𝑍
49 nfii1 4993 . . . . . . . . 9 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5048, 49nfiun 4987 . . . . . . . 8 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5147, 50nfrabw 3443 . . . . . . 7 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
523, 51nfcxfr 2889 . . . . . 6 𝑚𝐷
5344, 52nfel 2906 . . . . 5 𝑚 𝑦𝐷
5443, 53nfan 1899 . . . 4 𝑚(𝜑𝑦𝐷)
55 nfcv 2891 . . . 4 𝑤𝐹
562adantr 480 . . . . . 6 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
5724ffvelcdmda 7056 . . . . . 6 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
58 eqid 2729 . . . . . 6 dom (𝐹𝑚) = dom (𝐹𝑚)
5956, 57, 58smff 46730 . . . . 5 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
6059adantlr 715 . . . 4 (((𝜑𝑦𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
61 nfcv 2891 . . . . . . 7 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
62 nfv 1914 . . . . . . 7 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
63 nfcv 2891 . . . . . . . . . 10 𝑥𝑦
648, 63nffv 6868 . . . . . . . . 9 𝑥((𝐹𝑚)‘𝑦)
654, 64nfmpt 5205 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
6665nfel1 2908 . . . . . . 7 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
67 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6867mpteq2dv 5201 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
6968eleq1d 2813 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
7011, 61, 62, 66, 69cbvrabw 3441 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
71 nfcv 2891 . . . . . . . . . . . . 13 𝑙dom (𝐹𝑚)
72 nfcv 2891 . . . . . . . . . . . . . . 15 𝑚𝑙
7328, 72nffv 6868 . . . . . . . . . . . . . 14 𝑚(𝐹𝑙)
7473nfdm 5915 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑙)
75 fveq2 6858 . . . . . . . . . . . . . 14 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
7675dmeqd 5869 . . . . . . . . . . . . 13 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
7771, 74, 76cbviin 5001 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
7877a1i 11 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
79 fveq2 6858 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
80 eqidd 2730 . . . . . . . . . . . 12 ((𝑛 = 𝑖𝑙 ∈ (ℤ𝑖)) → dom (𝐹𝑙) = dom (𝐹𝑙))
8179, 80iineq12dv 45100 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8278, 81eqtrd 2764 . . . . . . . . . 10 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8382cbviunv 5004 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙)
8483eleq2i 2820 . . . . . . . 8 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
85 nfcv 2891 . . . . . . . . . 10 𝑙𝑍
86 nfcv 2891 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑦)
8773, 44nffv 6868 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑦)
8875fveq1d 6860 . . . . . . . . . 10 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑙)‘𝑦))
8948, 85, 86, 87, 88cbvmptf 5207 . . . . . . . . 9 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
9089eleq1i 2819 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ )
9184, 90anbi12i 628 . . . . . . 7 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ))
9291rabbia2 3408 . . . . . 6 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
933, 70, 923eqtri 2756 . . . . 5 𝐷 = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
94 fveq2 6858 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑤))
9594mpteq2dv 5201 . . . . . . . 8 (𝑦 = 𝑤 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)))
9695eleq1d 2813 . . . . . . 7 (𝑦 = 𝑤 → ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ))
9796cbvrabv 3416 . . . . . 6 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ }
98 fveq2 6858 . . . . . . . . . . . . 13 (𝑙 = 𝑚 → (𝐹𝑙) = (𝐹𝑚))
9998dmeqd 5869 . . . . . . . . . . . 12 (𝑙 = 𝑚 → dom (𝐹𝑙) = dom (𝐹𝑚))
10074, 71, 99cbviin 5001 . . . . . . . . . . 11 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
101100a1i 11 . . . . . . . . . 10 (𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
102101iuneq2i 4977 . . . . . . . . 9 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
103102eleq2i 2820 . . . . . . . 8 (𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ↔ 𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
104 nfcv 2891 . . . . . . . . . . 11 𝑚𝑤
10573, 104nffv 6868 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑤)
106 nfcv 2891 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑤)
10798fveq1d 6860 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑤) = ((𝐹𝑚)‘𝑤))
10885, 48, 105, 106, 107cbvmptf 5207 . . . . . . . . 9 (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
109108eleq1i 2819 . . . . . . . 8 ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ )
110103, 109anbi12i 628 . . . . . . 7 ((𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ) ↔ (𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ ))
111110rabbia2 3408 . . . . . 6 {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11297, 111eqtri 2752 . . . . 5 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11393, 112eqtri 2752 . . . 4 𝐷 = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
114 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
11554, 28, 55, 16, 60, 113, 114fnlimfvre 45672 . . 3 ((𝜑𝑦𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))) ∈ ℝ)
116 smflim.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
117 nfrab1 3426 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
1183, 117nfcxfr 2889 . . . . 5 𝑥𝐷
119 nfcv 2891 . . . . 5 𝑦𝐷
120 nfcv 2891 . . . . 5 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
121 nfcv 2891 . . . . . 6 𝑥
122121, 65nffv 6868 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
12368fveq2d 6862 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
124118, 119, 120, 122, 123cbvmptf 5207 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
125116, 124eqtri 2752 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
126115, 125fmptd 7086 . 2 (𝜑𝐺:𝐷⟶ℝ)
127 smflim.m . . . 4 (𝜑𝑀 ∈ ℤ)
128127adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
1292adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
13024adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
131 nfcv 2891 . . . . . . . . 9 𝑥𝑙
1326, 131nffv 6868 . . . . . . . 8 𝑥(𝐹𝑙)
133132, 63nffv 6868 . . . . . . 7 𝑥((𝐹𝑙)‘𝑦)
1344, 133nfmpt 5205 . . . . . 6 𝑥(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
135121, 134nffv 6868 . . . . 5 𝑥( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
136 nfcv 2891 . . . . . . . . 9 𝑙((𝐹𝑚)‘𝑥)
137 nfcv 2891 . . . . . . . . . 10 𝑚𝑥
13873, 137nffv 6868 . . . . . . . . 9 𝑚((𝐹𝑙)‘𝑥)
13975fveq1d 6860 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑙)‘𝑥))
14048, 85, 136, 138, 139cbvmptf 5207 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥))
141140a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)))
142 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑦𝑙𝑍) → 𝑥 = 𝑦)
143142fveq2d 6862 . . . . . . . 8 ((𝑥 = 𝑦𝑙𝑍) → ((𝐹𝑙)‘𝑥) = ((𝐹𝑙)‘𝑦))
144143mpteq2dva 5200 . . . . . . 7 (𝑥 = 𝑦 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
145141, 144eqtrd 2764 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
146145fveq2d 6862 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
147118, 119, 120, 135, 146cbvmptf 5207 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
148116, 147eqtri 2752 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
149 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
150 nfcv 2891 . . . . . . . . 9 𝑚 <
151 nfcv 2891 . . . . . . . . 9 𝑚(𝑎 + (1 / 𝑗))
15287, 150, 151nfbr 5154 . . . . . . . 8 𝑚((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
153152, 74nfrabw 3443 . . . . . . 7 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))}
154 nfcv 2891 . . . . . . . 8 𝑚𝑡
155154, 74nfin 4187 . . . . . . 7 𝑚(𝑡 ∩ dom (𝐹𝑙))
156153, 155nfeq 2905 . . . . . 6 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))
157 nfcv 2891 . . . . . 6 𝑚𝑆
158156, 157nfrabw 3443 . . . . 5 𝑚{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
159 nfcv 2891 . . . . 5 𝑘{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
160 nfcv 2891 . . . . 5 𝑙{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
161 nfcv 2891 . . . . 5 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
162 nfcv 2891 . . . . . . . . . . . 12 𝑦dom (𝐹𝑙)
163132nfdm 5915 . . . . . . . . . . . 12 𝑥dom (𝐹𝑙)
164 nfcv 2891 . . . . . . . . . . . . 13 𝑥 <
165 nfcv 2891 . . . . . . . . . . . . 13 𝑥(𝑎 + (1 / 𝑗))
166133, 164, 165nfbr 5154 . . . . . . . . . . . 12 𝑥((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
167 nfv 1914 . . . . . . . . . . . 12 𝑦((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))
168 fveq2 6858 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑥))
169168breq1d 5117 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))))
170162, 163, 166, 167, 169cbvrabw 3441 . . . . . . . . . . 11 {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))}
171170a1i 11 . . . . . . . . . 10 (𝑡 = 𝑠 → {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))})
172 ineq1 4176 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑡 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑙)))
173171, 172eqeq12d 2745 . . . . . . . . 9 (𝑡 = 𝑠 → ({𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))))
174173cbvrabv 3416 . . . . . . . 8 {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))}
175174a1i 11 . . . . . . 7 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))})
17699eleq2d 2814 . . . . . . . . . . 11 (𝑙 = 𝑚 → (𝑥 ∈ dom (𝐹𝑙) ↔ 𝑥 ∈ dom (𝐹𝑚)))
17798fveq1d 6860 . . . . . . . . . . . 12 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑥) = ((𝐹𝑚)‘𝑥))
178177breq1d 5117 . . . . . . . . . . 11 (𝑙 = 𝑚 → (((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))))
179176, 178anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑙) ∧ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)))))
180179rabbidva2 3407 . . . . . . . . 9 (𝑙 = 𝑚 → {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))})
18199ineq2d 4183 . . . . . . . . 9 (𝑙 = 𝑚 → (𝑠 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑚)))
182180, 181eqeq12d 2745 . . . . . . . 8 (𝑙 = 𝑚 → ({𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
183182rabbidv 3413 . . . . . . 7 (𝑙 = 𝑚 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
184175, 183eqtrd 2764 . . . . . 6 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
185 oveq2 7395 . . . . . . . . . . 11 (𝑗 = 𝑘 → (1 / 𝑗) = (1 / 𝑘))
186185oveq2d 7403 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑎 + (1 / 𝑗)) = (𝑎 + (1 / 𝑘)))
187186breq2d 5119 . . . . . . . . 9 (𝑗 = 𝑘 → (((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))))
188187rabbidv 3413 . . . . . . . 8 (𝑗 = 𝑘 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))})
189188eqeq1d 2731 . . . . . . 7 (𝑗 = 𝑘 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
190189rabbidv 3413 . . . . . 6 (𝑗 = 𝑘 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
191184, 190sylan9eq 2784 . . . . 5 ((𝑙 = 𝑚𝑗 = 𝑘) → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
192158, 159, 160, 161, 191cbvmpo 7483 . . . 4 (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
193192eqcomi 2738 . . 3 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))})
194128, 16, 129, 130, 93, 148, 149, 193smflimlem6 46774 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑦𝐷 ∣ (𝐺𝑦) ≤ 𝑎} ∈ (𝑆t 𝐷))
1951, 2, 42, 126, 194issmfled 46755 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wrex 3053  {crab 3405  cin 3913  wss 3914   cuni 4871   ciun 4955   ciin 4956   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  1c1 11069   + caddc 11071   < clt 11208   / cdiv 11835  cn 12186  cz 12529  cuz 12793  cli 15450  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ico 13312  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-rest 17385  df-salg 46307  df-smblfn 46694
This theorem is referenced by:  smflim2  46804
  Copyright terms: Public domain W3C validator