Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim Structured version   Visualization version   GIF version

Theorem smflim 43984
Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflim.n 𝑚𝐹
smflim.x 𝑥𝐹
smflim.m (𝜑𝑀 ∈ ℤ)
smflim.z 𝑍 = (ℤ𝑀)
smflim.s (𝜑𝑆 ∈ SAlg)
smflim.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑆,𝑚,𝑛   𝑚,𝑍,𝑥,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim
Dummy variables 𝑖 𝑗 𝑙 𝑦 𝑘 𝑠 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1922 . 2 𝑎𝜑
2 smflim.s . 2 (𝜑𝑆 ∈ SAlg)
3 smflim.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
4 nfcv 2904 . . . . . . 7 𝑥𝑍
5 nfcv 2904 . . . . . . . 8 𝑥(ℤ𝑛)
6 smflim.x . . . . . . . . . 10 𝑥𝐹
7 nfcv 2904 . . . . . . . . . 10 𝑥𝑚
86, 7nffv 6727 . . . . . . . . 9 𝑥(𝐹𝑚)
98nfdm 5820 . . . . . . . 8 𝑥dom (𝐹𝑚)
105, 9nfiin 4935 . . . . . . 7 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
114, 10nfiun 4934 . . . . . 6 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1211ssrab2f 42339 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
133, 12eqsstri 3935 . . . 4 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1413a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
15 uzssz 12459 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
16 smflim.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
1716eleq2i 2829 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 219 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1915, 18sseldi 3899 . . . . . . . 8 (𝑛𝑍𝑛 ∈ ℤ)
20 uzid 12453 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2119, 20syl 17 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221adantl 485 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
232adantr 484 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
24 smflim.f . . . . . . . 8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2524ffvelrnda 6904 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
26 eqid 2737 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2723, 25, 26smfdmss 43941 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ⊆ 𝑆)
28 smflim.n . . . . . . . . . 10 𝑚𝐹
29 nfcv 2904 . . . . . . . . . 10 𝑚𝑛
3028, 29nffv 6727 . . . . . . . . 9 𝑚(𝐹𝑛)
3130nfdm 5820 . . . . . . . 8 𝑚dom (𝐹𝑛)
32 nfcv 2904 . . . . . . . 8 𝑚 𝑆
3331, 32nfss 3892 . . . . . . 7 𝑚dom (𝐹𝑛) ⊆ 𝑆
34 fveq2 6717 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3534dmeqd 5774 . . . . . . . 8 (𝑚 = 𝑛 → dom (𝐹𝑚) = dom (𝐹𝑛))
3635sseq1d 3932 . . . . . . 7 (𝑚 = 𝑛 → (dom (𝐹𝑚) ⊆ 𝑆 ↔ dom (𝐹𝑛) ⊆ 𝑆))
3733, 36rspce 3526 . . . . . 6 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐹𝑛) ⊆ 𝑆) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
3822, 27, 37syl2anc 587 . . . . 5 ((𝜑𝑛𝑍) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
39 iinss 4965 . . . . 5 (∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4038, 39syl 17 . . . 4 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4140iunssd 4959 . . 3 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4214, 41sstrd 3911 . 2 (𝜑𝐷 𝑆)
43 nfv 1922 . . . . 5 𝑚𝜑
44 nfcv 2904 . . . . . 6 𝑚𝑦
45 nfmpt1 5153 . . . . . . . . 9 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
46 nfcv 2904 . . . . . . . . 9 𝑚dom ⇝
4745, 46nfel 2918 . . . . . . . 8 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
48 nfcv 2904 . . . . . . . . 9 𝑚𝑍
49 nfii1 4939 . . . . . . . . 9 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5048, 49nfiun 4934 . . . . . . . 8 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5147, 50nfrabw 3297 . . . . . . 7 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
523, 51nfcxfr 2902 . . . . . 6 𝑚𝐷
5344, 52nfel 2918 . . . . 5 𝑚 𝑦𝐷
5443, 53nfan 1907 . . . 4 𝑚(𝜑𝑦𝐷)
55 nfcv 2904 . . . 4 𝑤𝐹
562adantr 484 . . . . . 6 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
5724ffvelrnda 6904 . . . . . 6 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
58 eqid 2737 . . . . . 6 dom (𝐹𝑚) = dom (𝐹𝑚)
5956, 57, 58smff 43940 . . . . 5 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
6059adantlr 715 . . . 4 (((𝜑𝑦𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
61 nfcv 2904 . . . . . . 7 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
62 nfv 1922 . . . . . . 7 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
63 nfcv 2904 . . . . . . . . . 10 𝑥𝑦
648, 63nffv 6727 . . . . . . . . 9 𝑥((𝐹𝑚)‘𝑦)
654, 64nfmpt 5152 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
6665nfel1 2920 . . . . . . 7 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
67 fveq2 6717 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6867mpteq2dv 5151 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
6968eleq1d 2822 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
7011, 61, 62, 66, 69cbvrabw 3400 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
71 nfcv 2904 . . . . . . . . . . . . 13 𝑙dom (𝐹𝑚)
72 nfcv 2904 . . . . . . . . . . . . . . 15 𝑚𝑙
7328, 72nffv 6727 . . . . . . . . . . . . . 14 𝑚(𝐹𝑙)
7473nfdm 5820 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑙)
75 fveq2 6717 . . . . . . . . . . . . . 14 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
7675dmeqd 5774 . . . . . . . . . . . . 13 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
7771, 74, 76cbviin 4946 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
7877a1i 11 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
79 fveq2 6717 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
80 eqidd 2738 . . . . . . . . . . . 12 ((𝑛 = 𝑖𝑙 ∈ (ℤ𝑖)) → dom (𝐹𝑙) = dom (𝐹𝑙))
8179, 80iineq12dv 42329 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8278, 81eqtrd 2777 . . . . . . . . . 10 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8382cbviunv 4949 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙)
8483eleq2i 2829 . . . . . . . 8 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
85 nfcv 2904 . . . . . . . . . 10 𝑙𝑍
86 nfcv 2904 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑦)
8773, 44nffv 6727 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑦)
8875fveq1d 6719 . . . . . . . . . 10 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑙)‘𝑦))
8948, 85, 86, 87, 88cbvmptf 5154 . . . . . . . . 9 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
9089eleq1i 2828 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ )
9184, 90anbi12i 630 . . . . . . 7 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ))
9291rabbia2 3387 . . . . . 6 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
933, 70, 923eqtri 2769 . . . . 5 𝐷 = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
94 fveq2 6717 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑤))
9594mpteq2dv 5151 . . . . . . . 8 (𝑦 = 𝑤 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)))
9695eleq1d 2822 . . . . . . 7 (𝑦 = 𝑤 → ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ))
9796cbvrabv 3402 . . . . . 6 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ }
98 fveq2 6717 . . . . . . . . . . . . 13 (𝑙 = 𝑚 → (𝐹𝑙) = (𝐹𝑚))
9998dmeqd 5774 . . . . . . . . . . . 12 (𝑙 = 𝑚 → dom (𝐹𝑙) = dom (𝐹𝑚))
10074, 71, 99cbviin 4946 . . . . . . . . . . 11 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
101100a1i 11 . . . . . . . . . 10 (𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
102101iuneq2i 4925 . . . . . . . . 9 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
103102eleq2i 2829 . . . . . . . 8 (𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ↔ 𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
104 nfcv 2904 . . . . . . . . . . 11 𝑚𝑤
10573, 104nffv 6727 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑤)
106 nfcv 2904 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑤)
10798fveq1d 6719 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑤) = ((𝐹𝑚)‘𝑤))
10885, 48, 105, 106, 107cbvmptf 5154 . . . . . . . . 9 (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
109108eleq1i 2828 . . . . . . . 8 ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ )
110103, 109anbi12i 630 . . . . . . 7 ((𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ) ↔ (𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ ))
111110rabbia2 3387 . . . . . 6 {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11297, 111eqtri 2765 . . . . 5 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11393, 112eqtri 2765 . . . 4 𝐷 = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
114 simpr 488 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
11554, 28, 55, 16, 60, 113, 114fnlimfvre 42890 . . 3 ((𝜑𝑦𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))) ∈ ℝ)
116 smflim.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
117 nfrab1 3296 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
1183, 117nfcxfr 2902 . . . . 5 𝑥𝐷
119 nfcv 2904 . . . . 5 𝑦𝐷
120 nfcv 2904 . . . . 5 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
121 nfcv 2904 . . . . . 6 𝑥
122121, 65nffv 6727 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
12368fveq2d 6721 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
124118, 119, 120, 122, 123cbvmptf 5154 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
125116, 124eqtri 2765 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
126115, 125fmptd 6931 . 2 (𝜑𝐺:𝐷⟶ℝ)
127 smflim.m . . . 4 (𝜑𝑀 ∈ ℤ)
128127adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
1292adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
13024adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
131 nfcv 2904 . . . . . . . . 9 𝑥𝑙
1326, 131nffv 6727 . . . . . . . 8 𝑥(𝐹𝑙)
133132, 63nffv 6727 . . . . . . 7 𝑥((𝐹𝑙)‘𝑦)
1344, 133nfmpt 5152 . . . . . 6 𝑥(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
135121, 134nffv 6727 . . . . 5 𝑥( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
136 nfcv 2904 . . . . . . . . 9 𝑙((𝐹𝑚)‘𝑥)
137 nfcv 2904 . . . . . . . . . 10 𝑚𝑥
13873, 137nffv 6727 . . . . . . . . 9 𝑚((𝐹𝑙)‘𝑥)
13975fveq1d 6719 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑙)‘𝑥))
14048, 85, 136, 138, 139cbvmptf 5154 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥))
141140a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)))
142 simpl 486 . . . . . . . . 9 ((𝑥 = 𝑦𝑙𝑍) → 𝑥 = 𝑦)
143142fveq2d 6721 . . . . . . . 8 ((𝑥 = 𝑦𝑙𝑍) → ((𝐹𝑙)‘𝑥) = ((𝐹𝑙)‘𝑦))
144143mpteq2dva 5150 . . . . . . 7 (𝑥 = 𝑦 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
145141, 144eqtrd 2777 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
146145fveq2d 6721 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
147118, 119, 120, 135, 146cbvmptf 5154 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
148116, 147eqtri 2765 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
149 simpr 488 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
150 nfcv 2904 . . . . . . . . 9 𝑚 <
151 nfcv 2904 . . . . . . . . 9 𝑚(𝑎 + (1 / 𝑗))
15287, 150, 151nfbr 5100 . . . . . . . 8 𝑚((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
153152, 74nfrabw 3297 . . . . . . 7 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))}
154 nfcv 2904 . . . . . . . 8 𝑚𝑡
155154, 74nfin 4131 . . . . . . 7 𝑚(𝑡 ∩ dom (𝐹𝑙))
156153, 155nfeq 2917 . . . . . 6 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))
157 nfcv 2904 . . . . . 6 𝑚𝑆
158156, 157nfrabw 3297 . . . . 5 𝑚{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
159 nfcv 2904 . . . . 5 𝑘{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
160 nfcv 2904 . . . . 5 𝑙{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
161 nfcv 2904 . . . . 5 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
162 nfcv 2904 . . . . . . . . . . . 12 𝑦dom (𝐹𝑙)
163132nfdm 5820 . . . . . . . . . . . 12 𝑥dom (𝐹𝑙)
164 nfcv 2904 . . . . . . . . . . . . 13 𝑥 <
165 nfcv 2904 . . . . . . . . . . . . 13 𝑥(𝑎 + (1 / 𝑗))
166133, 164, 165nfbr 5100 . . . . . . . . . . . 12 𝑥((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
167 nfv 1922 . . . . . . . . . . . 12 𝑦((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))
168 fveq2 6717 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑥))
169168breq1d 5063 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))))
170162, 163, 166, 167, 169cbvrabw 3400 . . . . . . . . . . 11 {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))}
171170a1i 11 . . . . . . . . . 10 (𝑡 = 𝑠 → {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))})
172 ineq1 4120 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑡 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑙)))
173171, 172eqeq12d 2753 . . . . . . . . 9 (𝑡 = 𝑠 → ({𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))))
174173cbvrabv 3402 . . . . . . . 8 {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))}
175174a1i 11 . . . . . . 7 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))})
17699eleq2d 2823 . . . . . . . . . . 11 (𝑙 = 𝑚 → (𝑥 ∈ dom (𝐹𝑙) ↔ 𝑥 ∈ dom (𝐹𝑚)))
17798fveq1d 6719 . . . . . . . . . . . 12 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑥) = ((𝐹𝑚)‘𝑥))
178177breq1d 5063 . . . . . . . . . . 11 (𝑙 = 𝑚 → (((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))))
179176, 178anbi12d 634 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑙) ∧ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)))))
180179rabbidva2 3386 . . . . . . . . 9 (𝑙 = 𝑚 → {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))})
18199ineq2d 4127 . . . . . . . . 9 (𝑙 = 𝑚 → (𝑠 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑚)))
182180, 181eqeq12d 2753 . . . . . . . 8 (𝑙 = 𝑚 → ({𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
183182rabbidv 3390 . . . . . . 7 (𝑙 = 𝑚 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
184175, 183eqtrd 2777 . . . . . 6 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
185 oveq2 7221 . . . . . . . . . . 11 (𝑗 = 𝑘 → (1 / 𝑗) = (1 / 𝑘))
186185oveq2d 7229 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑎 + (1 / 𝑗)) = (𝑎 + (1 / 𝑘)))
187186breq2d 5065 . . . . . . . . 9 (𝑗 = 𝑘 → (((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))))
188187rabbidv 3390 . . . . . . . 8 (𝑗 = 𝑘 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))})
189188eqeq1d 2739 . . . . . . 7 (𝑗 = 𝑘 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
190189rabbidv 3390 . . . . . 6 (𝑗 = 𝑘 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
191184, 190sylan9eq 2798 . . . . 5 ((𝑙 = 𝑚𝑗 = 𝑘) → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
192158, 159, 160, 161, 191cbvmpo 7305 . . . 4 (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
193192eqcomi 2746 . . 3 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))})
194128, 16, 129, 130, 93, 148, 149, 193smflimlem6 43983 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑦𝐷 ∣ (𝐺𝑦) ≤ 𝑎} ∈ (𝑆t 𝐷))
1951, 2, 42, 126, 194issmfled 43965 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wnfc 2884  wrex 3062  {crab 3065  cin 3865  wss 3866   cuni 4819   ciun 4904   ciin 4905   class class class wbr 5053  cmpt 5135  dom cdm 5551  wf 6376  cfv 6380  (class class class)co 7213  cmpo 7215  cr 10728  1c1 10730   + caddc 10732   < clt 10867   / cdiv 11489  cn 11830  cz 12176  cuz 12438  cli 15045  SAlgcsalg 43524  SMblFncsmblfn 43908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-ioo 12939  df-ico 12941  df-fl 13367  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-rest 16927  df-salg 43525  df-smblfn 43909
This theorem is referenced by:  smflim2  44011
  Copyright terms: Public domain W3C validator