Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim Structured version   Visualization version   GIF version

Theorem smflim 46759
Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflim.n 𝑚𝐹
smflim.x 𝑥𝐹
smflim.m (𝜑𝑀 ∈ ℤ)
smflim.z 𝑍 = (ℤ𝑀)
smflim.s (𝜑𝑆 ∈ SAlg)
smflim.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑆,𝑚,𝑛   𝑚,𝑍,𝑥,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim
Dummy variables 𝑖 𝑗 𝑙 𝑦 𝑘 𝑠 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑎𝜑
2 smflim.s . 2 (𝜑𝑆 ∈ SAlg)
3 smflim.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
4 nfcv 2891 . . . . . . 7 𝑥𝑍
5 nfcv 2891 . . . . . . . 8 𝑥(ℤ𝑛)
6 smflim.x . . . . . . . . . 10 𝑥𝐹
7 nfcv 2891 . . . . . . . . . 10 𝑥𝑚
86, 7nffv 6836 . . . . . . . . 9 𝑥(𝐹𝑚)
98nfdm 5897 . . . . . . . 8 𝑥dom (𝐹𝑚)
105, 9nfiin 4977 . . . . . . 7 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
114, 10nfiun 4976 . . . . . 6 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1211ssrab2f 45095 . . . . 5 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
133, 12eqsstri 3984 . . . 4 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1413a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
15 uzssz 12774 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
16 smflim.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
1716eleq2i 2820 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 216 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1915, 18sselid 3935 . . . . . . . 8 (𝑛𝑍𝑛 ∈ ℤ)
20 uzid 12768 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2119, 20syl 17 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221adantl 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
232adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
24 smflim.f . . . . . . . 8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
2524ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
26 eqid 2729 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2723, 25, 26smfdmss 46715 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ⊆ 𝑆)
28 smflim.n . . . . . . . . . 10 𝑚𝐹
29 nfcv 2891 . . . . . . . . . 10 𝑚𝑛
3028, 29nffv 6836 . . . . . . . . 9 𝑚(𝐹𝑛)
3130nfdm 5897 . . . . . . . 8 𝑚dom (𝐹𝑛)
32 nfcv 2891 . . . . . . . 8 𝑚 𝑆
3331, 32nfss 3930 . . . . . . 7 𝑚dom (𝐹𝑛) ⊆ 𝑆
34 fveq2 6826 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3534dmeqd 5852 . . . . . . . 8 (𝑚 = 𝑛 → dom (𝐹𝑚) = dom (𝐹𝑛))
3635sseq1d 3969 . . . . . . 7 (𝑚 = 𝑛 → (dom (𝐹𝑚) ⊆ 𝑆 ↔ dom (𝐹𝑛) ⊆ 𝑆))
3733, 36rspce 3568 . . . . . 6 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐹𝑛) ⊆ 𝑆) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
3822, 27, 37syl2anc 584 . . . . 5 ((𝜑𝑛𝑍) → ∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
39 iinss 5008 . . . . 5 (∃𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4038, 39syl 17 . . . 4 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4140iunssd 5002 . . 3 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑆)
4214, 41sstrd 3948 . 2 (𝜑𝐷 𝑆)
43 nfv 1914 . . . . 5 𝑚𝜑
44 nfcv 2891 . . . . . 6 𝑚𝑦
45 nfmpt1 5194 . . . . . . . . 9 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
46 nfcv 2891 . . . . . . . . 9 𝑚dom ⇝
4745, 46nfel 2906 . . . . . . . 8 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
48 nfcv 2891 . . . . . . . . 9 𝑚𝑍
49 nfii1 4982 . . . . . . . . 9 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5048, 49nfiun 4976 . . . . . . . 8 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5147, 50nfrabw 3434 . . . . . . 7 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
523, 51nfcxfr 2889 . . . . . 6 𝑚𝐷
5344, 52nfel 2906 . . . . 5 𝑚 𝑦𝐷
5443, 53nfan 1899 . . . 4 𝑚(𝜑𝑦𝐷)
55 nfcv 2891 . . . 4 𝑤𝐹
562adantr 480 . . . . . 6 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
5724ffvelcdmda 7022 . . . . . 6 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
58 eqid 2729 . . . . . 6 dom (𝐹𝑚) = dom (𝐹𝑚)
5956, 57, 58smff 46714 . . . . 5 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
6059adantlr 715 . . . 4 (((𝜑𝑦𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
61 nfcv 2891 . . . . . . 7 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
62 nfv 1914 . . . . . . 7 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
63 nfcv 2891 . . . . . . . . . 10 𝑥𝑦
648, 63nffv 6836 . . . . . . . . 9 𝑥((𝐹𝑚)‘𝑦)
654, 64nfmpt 5193 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
6665nfel1 2908 . . . . . . 7 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
67 fveq2 6826 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6867mpteq2dv 5189 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
6968eleq1d 2813 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
7011, 61, 62, 66, 69cbvrabw 3432 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
71 nfcv 2891 . . . . . . . . . . . . 13 𝑙dom (𝐹𝑚)
72 nfcv 2891 . . . . . . . . . . . . . . 15 𝑚𝑙
7328, 72nffv 6836 . . . . . . . . . . . . . 14 𝑚(𝐹𝑙)
7473nfdm 5897 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑙)
75 fveq2 6826 . . . . . . . . . . . . . 14 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
7675dmeqd 5852 . . . . . . . . . . . . 13 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
7771, 74, 76cbviin 4989 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
7877a1i 11 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
79 fveq2 6826 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
80 eqidd 2730 . . . . . . . . . . . 12 ((𝑛 = 𝑖𝑙 ∈ (ℤ𝑖)) → dom (𝐹𝑙) = dom (𝐹𝑙))
8179, 80iineq12dv 45084 . . . . . . . . . . 11 (𝑛 = 𝑖 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8278, 81eqtrd 2764 . . . . . . . . . 10 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
8382cbviunv 4992 . . . . . . . . 9 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙)
8483eleq2i 2820 . . . . . . . 8 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙))
85 nfcv 2891 . . . . . . . . . 10 𝑙𝑍
86 nfcv 2891 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑦)
8773, 44nffv 6836 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑦)
8875fveq1d 6828 . . . . . . . . . 10 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑙)‘𝑦))
8948, 85, 86, 87, 88cbvmptf 5195 . . . . . . . . 9 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
9089eleq1i 2819 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ )
9184, 90anbi12i 628 . . . . . . 7 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ))
9291rabbia2 3399 . . . . . 6 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
933, 70, 923eqtri 2756 . . . . 5 𝐷 = {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ }
94 fveq2 6826 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑤))
9594mpteq2dv 5189 . . . . . . . 8 (𝑦 = 𝑤 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)))
9695eleq1d 2813 . . . . . . 7 (𝑦 = 𝑤 → ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ ↔ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ))
9796cbvrabv 3407 . . . . . 6 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ }
98 fveq2 6826 . . . . . . . . . . . . 13 (𝑙 = 𝑚 → (𝐹𝑙) = (𝐹𝑚))
9998dmeqd 5852 . . . . . . . . . . . 12 (𝑙 = 𝑚 → dom (𝐹𝑙) = dom (𝐹𝑚))
10074, 71, 99cbviin 4989 . . . . . . . . . . 11 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
101100a1i 11 . . . . . . . . . 10 (𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
102101iuneq2i 4966 . . . . . . . . 9 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
103102eleq2i 2820 . . . . . . . 8 (𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ↔ 𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
104 nfcv 2891 . . . . . . . . . . 11 𝑚𝑤
10573, 104nffv 6836 . . . . . . . . . 10 𝑚((𝐹𝑙)‘𝑤)
106 nfcv 2891 . . . . . . . . . 10 𝑙((𝐹𝑚)‘𝑤)
10798fveq1d 6828 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑤) = ((𝐹𝑚)‘𝑤))
10885, 48, 105, 106, 107cbvmptf 5195 . . . . . . . . 9 (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
109108eleq1i 2819 . . . . . . . 8 ((𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ )
110103, 109anbi12i 628 . . . . . . 7 ((𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∧ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ ) ↔ (𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ ))
111110rabbia2 3399 . . . . . 6 {𝑤 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑤)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11297, 111eqtri 2752 . . . . 5 {𝑦 𝑖𝑍 𝑙 ∈ (ℤ𝑖)dom (𝐹𝑙) ∣ (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)) ∈ dom ⇝ } = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
11393, 112eqtri 2752 . . . 4 𝐷 = {𝑤 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)) ∈ dom ⇝ }
114 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
11554, 28, 55, 16, 60, 113, 114fnlimfvre 45656 . . 3 ((𝜑𝑦𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))) ∈ ℝ)
116 smflim.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
117 nfrab1 3417 . . . . . 6 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
1183, 117nfcxfr 2889 . . . . 5 𝑥𝐷
119 nfcv 2891 . . . . 5 𝑦𝐷
120 nfcv 2891 . . . . 5 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
121 nfcv 2891 . . . . . 6 𝑥
122121, 65nffv 6836 . . . . 5 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
12368fveq2d 6830 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
124118, 119, 120, 122, 123cbvmptf 5195 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
125116, 124eqtri 2752 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
126115, 125fmptd 7052 . 2 (𝜑𝐺:𝐷⟶ℝ)
127 smflim.m . . . 4 (𝜑𝑀 ∈ ℤ)
128127adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
1292adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
13024adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
131 nfcv 2891 . . . . . . . . 9 𝑥𝑙
1326, 131nffv 6836 . . . . . . . 8 𝑥(𝐹𝑙)
133132, 63nffv 6836 . . . . . . 7 𝑥((𝐹𝑙)‘𝑦)
1344, 133nfmpt 5193 . . . . . 6 𝑥(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))
135121, 134nffv 6836 . . . . 5 𝑥( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
136 nfcv 2891 . . . . . . . . 9 𝑙((𝐹𝑚)‘𝑥)
137 nfcv 2891 . . . . . . . . . 10 𝑚𝑥
13873, 137nffv 6836 . . . . . . . . 9 𝑚((𝐹𝑙)‘𝑥)
13975fveq1d 6828 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑙)‘𝑥))
14048, 85, 136, 138, 139cbvmptf 5195 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥))
141140a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)))
142 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑦𝑙𝑍) → 𝑥 = 𝑦)
143142fveq2d 6830 . . . . . . . 8 ((𝑥 = 𝑦𝑙𝑍) → ((𝐹𝑙)‘𝑥) = ((𝐹𝑙)‘𝑦))
144143mpteq2dva 5188 . . . . . . 7 (𝑥 = 𝑦 → (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
145141, 144eqtrd 2764 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦)))
146145fveq2d 6830 . . . . 5 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
147118, 119, 120, 135, 146cbvmptf 5195 . . . 4 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
148116, 147eqtri 2752 . . 3 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑙𝑍 ↦ ((𝐹𝑙)‘𝑦))))
149 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
150 nfcv 2891 . . . . . . . . 9 𝑚 <
151 nfcv 2891 . . . . . . . . 9 𝑚(𝑎 + (1 / 𝑗))
15287, 150, 151nfbr 5142 . . . . . . . 8 𝑚((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
153152, 74nfrabw 3434 . . . . . . 7 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))}
154 nfcv 2891 . . . . . . . 8 𝑚𝑡
155154, 74nfin 4177 . . . . . . 7 𝑚(𝑡 ∩ dom (𝐹𝑙))
156153, 155nfeq 2905 . . . . . 6 𝑚{𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))
157 nfcv 2891 . . . . . 6 𝑚𝑆
158156, 157nfrabw 3434 . . . . 5 𝑚{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
159 nfcv 2891 . . . . 5 𝑘{𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}
160 nfcv 2891 . . . . 5 𝑙{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
161 nfcv 2891 . . . . 5 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
162 nfcv 2891 . . . . . . . . . . . 12 𝑦dom (𝐹𝑙)
163132nfdm 5897 . . . . . . . . . . . 12 𝑥dom (𝐹𝑙)
164 nfcv 2891 . . . . . . . . . . . . 13 𝑥 <
165 nfcv 2891 . . . . . . . . . . . . 13 𝑥(𝑎 + (1 / 𝑗))
166133, 164, 165nfbr 5142 . . . . . . . . . . . 12 𝑥((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))
167 nfv 1914 . . . . . . . . . . . 12 𝑦((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))
168 fveq2 6826 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐹𝑙)‘𝑦) = ((𝐹𝑙)‘𝑥))
169168breq1d 5105 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))))
170162, 163, 166, 167, 169cbvrabw 3432 . . . . . . . . . . 11 {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))}
171170a1i 11 . . . . . . . . . 10 (𝑡 = 𝑠 → {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))})
172 ineq1 4166 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑡 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑙)))
173171, 172eqeq12d 2745 . . . . . . . . 9 (𝑡 = 𝑠 → ({𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))))
174173cbvrabv 3407 . . . . . . . 8 {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))}
175174a1i 11 . . . . . . 7 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))})
17699eleq2d 2814 . . . . . . . . . . 11 (𝑙 = 𝑚 → (𝑥 ∈ dom (𝐹𝑙) ↔ 𝑥 ∈ dom (𝐹𝑚)))
17798fveq1d 6828 . . . . . . . . . . . 12 (𝑙 = 𝑚 → ((𝐹𝑙)‘𝑥) = ((𝐹𝑚)‘𝑥))
178177breq1d 5105 . . . . . . . . . . 11 (𝑙 = 𝑚 → (((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))))
179176, 178anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑙) ∧ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)))))
180179rabbidva2 3398 . . . . . . . . 9 (𝑙 = 𝑚 → {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))})
18199ineq2d 4173 . . . . . . . . 9 (𝑙 = 𝑚 → (𝑠 ∩ dom (𝐹𝑙)) = (𝑠 ∩ dom (𝐹𝑚)))
182180, 181eqeq12d 2745 . . . . . . . 8 (𝑙 = 𝑚 → ({𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
183182rabbidv 3404 . . . . . . 7 (𝑙 = 𝑚 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
184175, 183eqtrd 2764 . . . . . 6 (𝑙 = 𝑚 → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
185 oveq2 7361 . . . . . . . . . . 11 (𝑗 = 𝑘 → (1 / 𝑗) = (1 / 𝑘))
186185oveq2d 7369 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑎 + (1 / 𝑗)) = (𝑎 + (1 / 𝑘)))
187186breq2d 5107 . . . . . . . . 9 (𝑗 = 𝑘 → (((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗)) ↔ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))))
188187rabbidv 3404 . . . . . . . 8 (𝑗 = 𝑘 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))})
189188eqeq1d 2731 . . . . . . 7 (𝑗 = 𝑘 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
190189rabbidv 3404 . . . . . 6 (𝑗 = 𝑘 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
191184, 190sylan9eq 2784 . . . . 5 ((𝑙 = 𝑚𝑗 = 𝑘) → {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
192158, 159, 160, 161, 191cbvmpo 7447 . . . 4 (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))}) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
193192eqcomi 2738 . . 3 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝑎 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑙𝑍, 𝑗 ∈ ℕ ↦ {𝑡𝑆 ∣ {𝑦 ∈ dom (𝐹𝑙) ∣ ((𝐹𝑙)‘𝑦) < (𝑎 + (1 / 𝑗))} = (𝑡 ∩ dom (𝐹𝑙))})
194128, 16, 129, 130, 93, 148, 149, 193smflimlem6 46758 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑦𝐷 ∣ (𝐺𝑦) ≤ 𝑎} ∈ (𝑆t 𝐷))
1951, 2, 42, 126, 194issmfled 46739 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wrex 3053  {crab 3396  cin 3904  wss 3905   cuni 4861   ciun 4944   ciin 4945   class class class wbr 5095  cmpt 5176  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cr 11027  1c1 11029   + caddc 11031   < clt 11168   / cdiv 11795  cn 12146  cz 12489  cuz 12753  cli 15409  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ico 13272  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-rest 17344  df-salg 46291  df-smblfn 46678
This theorem is referenced by:  smflim2  46788
  Copyright terms: Public domain W3C validator