Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq12i Structured version   Visualization version   GIF version

Theorem iineq12i 36153
Description: Equality theorem for indexed intersection. Inference version. General version of iineq1i 36152. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
iineq12i.1 𝐴 = 𝐵
iineq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
iineq12i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷

Proof of Theorem iineq12i
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 iineq12i.1 . . . 4 𝐴 = 𝐵
2 iineq12i.2 . . . . 5 𝐶 = 𝐷
32eleq2i 2836 . . . 4 (𝑡𝐶𝑡𝐷)
41, 3raleqbii 3352 . . 3 (∀𝑥𝐴 𝑡𝐶 ↔ ∀𝑥𝐵 𝑡𝐷)
54abbii 2812 . 2 {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∀𝑥𝐵 𝑡𝐷}
6 df-iin 5018 . 2 𝑥𝐴 𝐶 = {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶}
7 df-iin 5018 . 2 𝑥𝐵 𝐷 = {𝑡 ∣ ∀𝑥𝐵 𝑡𝐷}
85, 6, 73eqtr4i 2778 1 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {cab 2717  wral 3067   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-iin 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator