Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq1i Structured version   Visualization version   GIF version

Theorem iineq1i 36240
Description: Equality theorem for indexed intersection. Inference version. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
iineq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
iineq1i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶

Proof of Theorem iineq1i
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 iineq1i.1 . . . . . 6 𝐴 = 𝐵
21eleq2i 2823 . . . . 5 (𝑥𝐴𝑥𝐵)
32imbi1i 349 . . . 4 ((𝑥𝐴𝑡𝐶) ↔ (𝑥𝐵𝑡𝐶))
43ralbii2 3074 . . 3 (∀𝑥𝐴 𝑡𝐶 ↔ ∀𝑥𝐵 𝑡𝐶)
54abbii 2798 . 2 {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∀𝑥𝐵 𝑡𝐶}
6 df-iin 4942 . 2 𝑥𝐴 𝐶 = {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶}
7 df-iin 4942 . 2 𝑥𝐵 𝐶 = {𝑡 ∣ ∀𝑥𝐵 𝑡𝐶}
85, 6, 73eqtr4i 2764 1 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  wral 3047   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-iin 4942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator