MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ral2imi Structured version   Visualization version   GIF version

Theorem ral2imi 3086
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3087. (Revised by Wolf Lammen, 1-Dec-2019.)
Hypothesis
Ref Expression
ral2imi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ral2imi (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ral2imi
StepHypRef Expression
1 df-ral 3063 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 ral2imi.1 . . . . 5 (𝜑 → (𝜓𝜒))
32imim3i 64 . . . 4 ((𝑥𝐴𝜑) → ((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
43al2imi 1818 . . 3 (∀𝑥(𝑥𝐴𝜑) → (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐴𝜒)))
5 df-ral 3063 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
6 df-ral 3063 . . 3 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
74, 5, 63imtr4g 296 . 2 (∀𝑥(𝑥𝐴𝜑) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
81, 7sylbi 216 1 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wcel 2107  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ral 3063
This theorem is referenced by:  ralim  3087  rexim  3088  ralbi  3104  r19.26  3112  iiner  8783  ss2ixp  8904  undifixp  8928  boxriin  8934  acni2  10041  axcc4  10434  intgru  10809  ingru  10810  prdsdsval3  17431  mndind  18709  hauscmplem  22910  uspgr2wlkeq  28934  wlkp1lem8  28968  prdstotbnd  36710  mnuunid  43084
  Copyright terms: Public domain W3C validator