| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3076. (Revised by Wolf Lammen, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ral2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ral2imi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | ral2imi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | imim3i 64 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | al2imi 1815 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
| 5 | df-ral 3052 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 6 | df-ral 3052 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
| 7 | 4, 5, 6 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: ralim 3076 rexim 3077 ralbi 3092 r19.26 3098 iiner 8803 ss2ixp 8924 undifixp 8948 boxriin 8954 acni2 10060 axcc4 10453 intgru 10828 ingru 10829 prdsdsval3 17499 mndind 18806 hauscmplem 23344 uspgr2wlkeq 29626 wlkp1lem8 29660 prdstotbnd 37818 mnuunid 44301 |
| Copyright terms: Public domain | W3C validator |