MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ral2imi Structured version   Visualization version   GIF version

Theorem ral2imi 3068
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3069. (Revised by Wolf Lammen, 1-Dec-2019.)
Hypothesis
Ref Expression
ral2imi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ral2imi (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ral2imi
StepHypRef Expression
1 df-ral 3045 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 ral2imi.1 . . . . 5 (𝜑 → (𝜓𝜒))
32imim3i 64 . . . 4 ((𝑥𝐴𝜑) → ((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
43al2imi 1815 . . 3 (∀𝑥(𝑥𝐴𝜑) → (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐴𝜒)))
5 df-ral 3045 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
6 df-ral 3045 . . 3 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
74, 5, 63imtr4g 296 . 2 (∀𝑥(𝑥𝐴𝜑) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
81, 7sylbi 217 1 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3045
This theorem is referenced by:  ralim  3069  rexim  3070  ralbi  3085  r19.26  3091  iiner  8762  ss2ixp  8883  undifixp  8907  boxriin  8913  acni2  9999  axcc4  10392  intgru  10767  ingru  10768  prdsdsval3  17448  mndind  18755  hauscmplem  23293  uspgr2wlkeq  29574  wlkp1lem8  29608  prdstotbnd  37788  mnuunid  44266
  Copyright terms: Public domain W3C validator