MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ral2imi Structured version   Visualization version   GIF version

Theorem ral2imi 3075
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3076. (Revised by Wolf Lammen, 1-Dec-2019.)
Hypothesis
Ref Expression
ral2imi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ral2imi (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ral2imi
StepHypRef Expression
1 df-ral 3052 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 ral2imi.1 . . . . 5 (𝜑 → (𝜓𝜒))
32imim3i 64 . . . 4 ((𝑥𝐴𝜑) → ((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
43al2imi 1815 . . 3 (∀𝑥(𝑥𝐴𝜑) → (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐴𝜒)))
5 df-ral 3052 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
6 df-ral 3052 . . 3 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
74, 5, 63imtr4g 296 . 2 (∀𝑥(𝑥𝐴𝜑) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
81, 7sylbi 217 1 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2108  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3052
This theorem is referenced by:  ralim  3076  rexim  3077  ralbi  3092  r19.26  3098  iiner  8803  ss2ixp  8924  undifixp  8948  boxriin  8954  acni2  10060  axcc4  10453  intgru  10828  ingru  10829  prdsdsval3  17499  mndind  18806  hauscmplem  23344  uspgr2wlkeq  29626  wlkp1lem8  29660  prdstotbnd  37818  mnuunid  44301
  Copyright terms: Public domain W3C validator