| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3073. (Revised by Wolf Lammen, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ral2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ral2imi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3049 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | ral2imi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | imim3i 64 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | al2imi 1816 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
| 5 | df-ral 3049 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 6 | df-ral 3049 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
| 7 | 4, 5, 6 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2113 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3049 |
| This theorem is referenced by: ralim 3073 rexim 3074 ralbi 3088 r19.26 3093 falseral0 4464 iiner 8721 ss2ixp 8842 undifixp 8866 boxriin 8872 acni2 9946 axcc4 10339 intgru 10714 ingru 10715 prdsdsval3 17393 mndind 18740 hauscmplem 23324 uspgr2wlkeq 29628 wlkp1lem8 29661 prdstotbnd 37857 mnuunid 44397 |
| Copyright terms: Public domain | W3C validator |