Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ral2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3085. (Revised by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ral2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ral2imi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | ral2imi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | imim3i 64 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | al2imi 1816 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
5 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
6 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
7 | 4, 5, 6 | 3imtr4g 295 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2105 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-ral 3062 |
This theorem is referenced by: ralim 3085 rexim 3086 ralbi 3102 r19.26 3110 iiner 8649 ss2ixp 8769 undifixp 8793 boxriin 8799 acni2 9903 axcc4 10296 intgru 10671 ingru 10672 prdsdsval3 17293 mndind 18563 hauscmplem 22663 uspgr2wlkeq 28302 wlkp1lem8 28336 prdstotbnd 36057 mnuunid 42216 |
Copyright terms: Public domain | W3C validator |