| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inabs | Structured version Visualization version GIF version | ||
| Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
| Ref | Expression |
|---|---|
| inabs | ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4127 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | dfss2 3916 | . 2 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-in 3905 df-ss 3915 |
| This theorem is referenced by: dfif5 4491 caragenuncllem 46634 |
| Copyright terms: Public domain | W3C validator |