Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inabs | Structured version Visualization version GIF version |
Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
Ref | Expression |
---|---|
inabs | ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4106 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | df-ss 3904 | . 2 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 |
This theorem is referenced by: dfif5 4475 caragenuncllem 44050 |
Copyright terms: Public domain | W3C validator |