MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inabs Structured version   Visualization version   GIF version

Theorem inabs 4232
Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
inabs (𝐴 ∩ (𝐴𝐵)) = 𝐴

Proof of Theorem inabs
StepHypRef Expression
1 ssun1 4144 . 2 𝐴 ⊆ (𝐴𝐵)
2 dfss2 3935 . 2 (𝐴 ⊆ (𝐴𝐵) ↔ (𝐴 ∩ (𝐴𝐵)) = 𝐴)
31, 2mpbi 230 1 (𝐴 ∩ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3915  cin 3916  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-in 3924  df-ss 3934
This theorem is referenced by:  dfif5  4508  caragenuncllem  46517
  Copyright terms: Public domain W3C validator