![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inabs | Structured version Visualization version GIF version |
Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
Ref | Expression |
---|---|
inabs | ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4172 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | df-ss 3965 | . 2 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3946 ∩ cin 3947 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 |
This theorem is referenced by: dfif5 4544 caragenuncllem 45686 |
Copyright terms: Public domain | W3C validator |