MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inabs Structured version   Visualization version   GIF version

Theorem inabs 4189
Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
inabs (𝐴 ∩ (𝐴𝐵)) = 𝐴

Proof of Theorem inabs
StepHypRef Expression
1 ssun1 4106 . 2 𝐴 ⊆ (𝐴𝐵)
2 df-ss 3904 . 2 (𝐴 ⊆ (𝐴𝐵) ↔ (𝐴 ∩ (𝐴𝐵)) = 𝐴)
31, 2mpbi 229 1 (𝐴 ∩ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885  cin 3886  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904
This theorem is referenced by:  dfif5  4475  caragenuncllem  44050
  Copyright terms: Public domain W3C validator