| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inabs | Structured version Visualization version GIF version | ||
| Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
| Ref | Expression |
|---|---|
| inabs | ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4144 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | dfss2 3935 | . 2 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-in 3924 df-ss 3934 |
| This theorem is referenced by: dfif5 4508 caragenuncllem 46517 |
| Copyright terms: Public domain | W3C validator |