MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssinpss Structured version   Visualization version   GIF version

Theorem nssinpss 4021
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
nssinpss 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem nssinpss
StepHypRef Expression
1 inss1 3992 . . 3 (𝐴𝐵) ⊆ 𝐴
21biantrur 526 . 2 ((𝐴𝐵) ≠ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
3 df-ss 3746 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
43necon3bbii 2984 . 2 𝐴𝐵 ↔ (𝐴𝐵) ≠ 𝐴)
5 df-pss 3748 . 2 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
62, 4, 53bitr4i 294 1 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384  wne 2937  cin 3731  wss 3732  wpss 3733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-v 3352  df-in 3739  df-ss 3746  df-pss 3748
This theorem is referenced by:  fbfinnfr  21924  chrelat2i  29680
  Copyright terms: Public domain W3C validator