MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssinpss Structured version   Visualization version   GIF version

Theorem nssinpss 4216
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
nssinpss 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem nssinpss
StepHypRef Expression
1 inss1 4186 . . 3 (𝐴𝐵) ⊆ 𝐴
21biantrur 530 . 2 ((𝐴𝐵) ≠ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
3 dfss2 3916 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
43necon3bbii 2976 . 2 𝐴𝐵 ↔ (𝐴𝐵) ≠ 𝐴)
5 df-pss 3918 . 2 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
62, 4, 53bitr4i 303 1 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wne 2929  cin 3897  wss 3898  wpss 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-v 3439  df-in 3905  df-ss 3915  df-pss 3918
This theorem is referenced by:  fbfinnfr  23757  chrelat2i  32347
  Copyright terms: Public domain W3C validator