![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nssinpss | Structured version Visualization version GIF version |
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nssinpss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4131 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | 1 | biantrur 531 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) |
3 | df-ss 3880 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
4 | 3 | necon3bbii 3033 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ≠ 𝐴) |
5 | df-pss 3882 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) | |
6 | 2, 4, 5 | 3bitr4i 304 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∧ wa 396 ≠ wne 2986 ∩ cin 3864 ⊆ wss 3865 ⊊ wpss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-v 3442 df-in 3872 df-ss 3880 df-pss 3882 |
This theorem is referenced by: fbfinnfr 22137 chrelat2i 29829 |
Copyright terms: Public domain | W3C validator |