MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssinpss Structured version   Visualization version   GIF version

Theorem nssinpss 4196
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
nssinpss 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem nssinpss
StepHypRef Expression
1 inss1 4168 . . 3 (𝐴𝐵) ⊆ 𝐴
21biantrur 531 . 2 ((𝐴𝐵) ≠ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
3 df-ss 3909 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
43necon3bbii 2993 . 2 𝐴𝐵 ↔ (𝐴𝐵) ≠ 𝐴)
5 df-pss 3911 . 2 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
62, 4, 53bitr4i 303 1 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wne 2945  cin 3891  wss 3892  wpss 3893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-v 3433  df-in 3899  df-ss 3909  df-pss 3911
This theorem is referenced by:  fbfinnfr  22990  chrelat2i  30723
  Copyright terms: Public domain W3C validator