![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nssinpss | Structured version Visualization version GIF version |
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nssinpss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4258 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | 1 | biantrur 530 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) |
3 | dfss2 3994 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
4 | 3 | necon3bbii 2994 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ≠ 𝐴) |
5 | df-pss 3996 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) | |
6 | 2, 4, 5 | 3bitr4i 303 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ≠ wne 2946 ∩ cin 3975 ⊆ wss 3976 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-in 3983 df-ss 3993 df-pss 3996 |
This theorem is referenced by: fbfinnfr 23870 chrelat2i 32397 |
Copyright terms: Public domain | W3C validator |