| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nssinpss | Structured version Visualization version GIF version | ||
| Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nssinpss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4203 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | 1 | biantrur 530 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) |
| 3 | dfss2 3935 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 4 | 3 | necon3bbii 2973 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ≠ 𝐴) |
| 5 | df-pss 3937 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) | |
| 6 | 2, 4, 5 | 3bitr4i 303 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ≠ wne 2926 ∩ cin 3916 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-in 3924 df-ss 3934 df-pss 3937 |
| This theorem is referenced by: fbfinnfr 23735 chrelat2i 32301 |
| Copyright terms: Public domain | W3C validator |