Proof of Theorem dfif5
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | inindi 4234 | . 2
⊢ ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵 ∪ 𝐶))) = (((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ ((𝐴 ∪ 𝐵) ∩ (𝐵 ∪ 𝐶))) | 
| 2 |  | dfif3.1 | . . 3
⊢ 𝐶 = {𝑥 ∣ 𝜑} | 
| 3 | 2 | dfif4 4540 | . 2
⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵 ∪ 𝐶))) | 
| 4 |  | undir 4286 | . . 3
⊢ ((𝐴 ∩ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) = ((𝐴 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) ∩ (𝐵 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶))))) | 
| 5 |  | unidm 4156 | . . . . . . . 8
⊢ (𝐴 ∪ 𝐴) = 𝐴 | 
| 6 | 5 | uneq1i 4163 | . . . . . . 7
⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) | 
| 7 |  | unass 4171 | . . . . . . 7
⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∪ (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶)))) | 
| 8 |  | undi 4284 | . . . . . . 7
⊢ (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) | 
| 9 | 6, 7, 8 | 3eqtr3ri 2773 | . . . . . 6
⊢ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) = (𝐴 ∪ (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶)))) | 
| 10 |  | undi 4284 | . . . . . . . 8
⊢ (𝐴 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) = ((𝐴 ∪ (𝐴 ∖ 𝐵)) ∩ (𝐴 ∪ 𝐶)) | 
| 11 |  | undifabs 4477 | . . . . . . . . 9
⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 | 
| 12 | 11 | ineq1i 4215 | . . . . . . . 8
⊢ ((𝐴 ∪ (𝐴 ∖ 𝐵)) ∩ (𝐴 ∪ 𝐶)) = (𝐴 ∩ (𝐴 ∪ 𝐶)) | 
| 13 |  | inabs 4265 | . . . . . . . 8
⊢ (𝐴 ∩ (𝐴 ∪ 𝐶)) = 𝐴 | 
| 14 | 10, 12, 13 | 3eqtri 2768 | . . . . . . 7
⊢ (𝐴 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) = 𝐴 | 
| 15 |  | undif2 4476 | . . . . . . . . 9
⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | 
| 16 | 15 | ineq1i 4215 | . . . . . . . 8
⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) ∩ (𝐴 ∪ (V ∖ 𝐶))) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) | 
| 17 |  | undi 4284 | . . . . . . . 8
⊢ (𝐴 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶))) = ((𝐴 ∪ (𝐵 ∖ 𝐴)) ∩ (𝐴 ∪ (V ∖ 𝐶))) | 
| 18 | 16, 17, 8 | 3eqtr4i 2774 | . . . . . . 7
⊢ (𝐴 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶))) = (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) | 
| 19 | 14, 18 | uneq12i 4165 | . . . . . 6
⊢ ((𝐴 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) ∪ (𝐴 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) = (𝐴 ∪ (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶)))) | 
| 20 | 9, 19 | eqtr4i 2767 | . . . . 5
⊢ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) = ((𝐴 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) ∪ (𝐴 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | 
| 21 |  | unundi 4175 | . . . . 5
⊢ (𝐴 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) = ((𝐴 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) ∪ (𝐴 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | 
| 22 | 20, 21 | eqtr4i 2767 | . . . 4
⊢ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) = (𝐴 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | 
| 23 |  | unass 4171 | . . . . . 6
⊢ (((𝐴 ∩ 𝐶) ∪ 𝐵) ∪ 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∪ 𝐵)) | 
| 24 |  | undi 4284 | . . . . . . . . 9
⊢ (𝐵 ∪ (𝐴 ∩ 𝐶)) = ((𝐵 ∪ 𝐴) ∩ (𝐵 ∪ 𝐶)) | 
| 25 |  | uncom 4157 | . . . . . . . . 9
⊢ ((𝐴 ∩ 𝐶) ∪ 𝐵) = (𝐵 ∪ (𝐴 ∩ 𝐶)) | 
| 26 |  | undif2 4476 | . . . . . . . . . 10
⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | 
| 27 | 26 | ineq1i 4215 | . . . . . . . . 9
⊢ ((𝐵 ∪ (𝐴 ∖ 𝐵)) ∩ (𝐵 ∪ 𝐶)) = ((𝐵 ∪ 𝐴) ∩ (𝐵 ∪ 𝐶)) | 
| 28 | 24, 25, 27 | 3eqtr4i 2774 | . . . . . . . 8
⊢ ((𝐴 ∩ 𝐶) ∪ 𝐵) = ((𝐵 ∪ (𝐴 ∖ 𝐵)) ∩ (𝐵 ∪ 𝐶)) | 
| 29 |  | undi 4284 | . . . . . . . 8
⊢ (𝐵 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) = ((𝐵 ∪ (𝐴 ∖ 𝐵)) ∩ (𝐵 ∪ 𝐶)) | 
| 30 | 28, 29 | eqtr4i 2767 | . . . . . . 7
⊢ ((𝐴 ∩ 𝐶) ∪ 𝐵) = (𝐵 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) | 
| 31 |  | undi 4284 | . . . . . . . 8
⊢ (𝐵 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶))) = ((𝐵 ∪ (𝐵 ∖ 𝐴)) ∩ (𝐵 ∪ (V ∖ 𝐶))) | 
| 32 |  | undifabs 4477 | . . . . . . . . 9
⊢ (𝐵 ∪ (𝐵 ∖ 𝐴)) = 𝐵 | 
| 33 | 32 | ineq1i 4215 | . . . . . . . 8
⊢ ((𝐵 ∪ (𝐵 ∖ 𝐴)) ∩ (𝐵 ∪ (V ∖ 𝐶))) = (𝐵 ∩ (𝐵 ∪ (V ∖ 𝐶))) | 
| 34 |  | inabs 4265 | . . . . . . . 8
⊢ (𝐵 ∩ (𝐵 ∪ (V ∖ 𝐶))) = 𝐵 | 
| 35 | 31, 33, 34 | 3eqtrri 2769 | . . . . . . 7
⊢ 𝐵 = (𝐵 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶))) | 
| 36 | 30, 35 | uneq12i 4165 | . . . . . 6
⊢ (((𝐴 ∩ 𝐶) ∪ 𝐵) ∪ 𝐵) = ((𝐵 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) ∪ (𝐵 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | 
| 37 |  | unidm 4156 | . . . . . . 7
⊢ (𝐵 ∪ 𝐵) = 𝐵 | 
| 38 | 37 | uneq2i 4164 | . . . . . 6
⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∪ 𝐵)) = ((𝐴 ∩ 𝐶) ∪ 𝐵) | 
| 39 | 23, 36, 38 | 3eqtr3ri 2773 | . . . . 5
⊢ ((𝐴 ∩ 𝐶) ∪ 𝐵) = ((𝐵 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) ∪ (𝐵 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | 
| 40 |  | uncom 4157 | . . . . . . 7
⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | 
| 41 | 40 | ineq2i 4216 | . . . . . 6
⊢ ((𝐴 ∪ 𝐵) ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐶 ∪ 𝐵)) | 
| 42 |  | undir 4286 | . . . . . 6
⊢ ((𝐴 ∩ 𝐶) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ (𝐶 ∪ 𝐵)) | 
| 43 | 41, 42 | eqtr4i 2767 | . . . . 5
⊢ ((𝐴 ∪ 𝐵) ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐶) ∪ 𝐵) | 
| 44 |  | unundi 4175 | . . . . 5
⊢ (𝐵 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) = ((𝐵 ∪ ((𝐴 ∖ 𝐵) ∩ 𝐶)) ∪ (𝐵 ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | 
| 45 | 39, 43, 44 | 3eqtr4i 2774 | . . . 4
⊢ ((𝐴 ∪ 𝐵) ∩ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | 
| 46 | 22, 45 | ineq12i 4217 | . . 3
⊢ (((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ ((𝐴 ∪ 𝐵) ∩ (𝐵 ∪ 𝐶))) = ((𝐴 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) ∩ (𝐵 ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶))))) | 
| 47 | 4, 46 | eqtr4i 2767 | . 2
⊢ ((𝐴 ∩ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) = (((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ ((𝐴 ∪ 𝐵) ∩ (𝐵 ∪ 𝐶))) | 
| 48 | 1, 3, 47 | 3eqtr4i 2774 | 1
⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) |