Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inabs3 Structured version   Visualization version   GIF version

Theorem inabs3 44958
Description: Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
inabs3 (𝐶𝐵 → ((𝐴𝐵) ∩ 𝐶) = (𝐴𝐶))

Proof of Theorem inabs3
StepHypRef Expression
1 inass 4249 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
2 sseqin2 4244 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐶)
32biimpi 216 . . 3 (𝐶𝐵 → (𝐵𝐶) = 𝐶)
43ineq2d 4241 . 2 (𝐶𝐵 → (𝐴 ∩ (𝐵𝐶)) = (𝐴𝐶))
51, 4eqtrid 2792 1 (𝐶𝐵 → ((𝐴𝐵) ∩ 𝐶) = (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by:  carageniuncllem1  46442
  Copyright terms: Public domain W3C validator