| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inabs3 | Structured version Visualization version GIF version | ||
| Description: Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| inabs3 | ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4177 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
| 2 | sseqin2 4172 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) = 𝐶) |
| 4 | 3 | ineq2d 4169 | . 2 ⊢ (𝐶 ⊆ 𝐵 → (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ 𝐶)) |
| 5 | 1, 4 | eqtrid 2780 | 1 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 |
| This theorem is referenced by: carageniuncllem1 46681 |
| Copyright terms: Public domain | W3C validator |