Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inabs3 | Structured version Visualization version GIF version |
Description: Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
inabs3 | ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4150 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
2 | sseqin2 4146 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
3 | 2 | biimpi 215 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) = 𝐶) |
4 | 3 | ineq2d 4143 | . 2 ⊢ (𝐶 ⊆ 𝐵 → (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ 𝐶)) |
5 | 1, 4 | syl5eq 2791 | 1 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: carageniuncllem1 43949 |
Copyright terms: Public domain | W3C validator |