Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwpwuni | Structured version Visualization version GIF version |
Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwpwuni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwg 4536 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝐴 ⊆ 𝒫 𝐵)) | |
2 | sspwuni 5029 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) |
4 | uniexg 7593 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
5 | elpwg 4536 | . . . 4 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∈ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) |
7 | 6 | bicomd 222 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ⊆ 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
8 | 1, 3, 7 | 3bitrd 305 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 |
This theorem is referenced by: psmeasurelem 44008 |
Copyright terms: Public domain | W3C validator |