Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwpwuni Structured version   Visualization version   GIF version

Theorem pwpwuni 45058
Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwpwuni (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))

Proof of Theorem pwpwuni
StepHypRef Expression
1 elpwg 4569 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵𝐴 ⊆ 𝒫 𝐵))
2 sspwuni 5067 . . 3 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
32a1i 11 . 2 (𝐴𝑉 → (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵))
4 uniexg 7719 . . . 4 (𝐴𝑉 𝐴 ∈ V)
5 elpwg 4569 . . . 4 ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
64, 5syl 17 . . 3 (𝐴𝑉 → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
76bicomd 223 . 2 (𝐴𝑉 → ( 𝐴𝐵 𝐴 ∈ 𝒫 𝐵))
81, 3, 73bitrd 305 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3934  df-pw 4568  df-uni 4875
This theorem is referenced by:  psmeasurelem  46475
  Copyright terms: Public domain W3C validator