| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwpwuni | Structured version Visualization version GIF version | ||
| Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| pwpwuni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 4578 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝐴 ⊆ 𝒫 𝐵)) | |
| 2 | sspwuni 5076 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) |
| 4 | uniexg 7734 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 5 | elpwg 4578 | . . . 4 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∈ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) |
| 7 | 6 | bicomd 223 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ⊆ 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
| 8 | 1, 3, 7 | 3bitrd 305 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-pw 4577 df-uni 4884 |
| This theorem is referenced by: psmeasurelem 46499 |
| Copyright terms: Public domain | W3C validator |