Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwpwuni Structured version   Visualization version   GIF version

Theorem pwpwuni 44046
Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwpwuni (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))

Proof of Theorem pwpwuni
StepHypRef Expression
1 elpwg 4605 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵𝐴 ⊆ 𝒫 𝐵))
2 sspwuni 5103 . . 3 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
32a1i 11 . 2 (𝐴𝑉 → (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵))
4 uniexg 7733 . . . 4 (𝐴𝑉 𝐴 ∈ V)
5 elpwg 4605 . . . 4 ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
64, 5syl 17 . . 3 (𝐴𝑉 → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
76bicomd 222 . 2 (𝐴𝑉 → ( 𝐴𝐵 𝐴 ∈ 𝒫 𝐵))
81, 3, 73bitrd 305 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2105  Vcvv 3473  wss 3948  𝒫 cpw 4602   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-v 3475  df-in 3955  df-ss 3965  df-pw 4604  df-uni 4909
This theorem is referenced by:  psmeasurelem  45485
  Copyright terms: Public domain W3C validator