![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwpwuni | Structured version Visualization version GIF version |
Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwpwuni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwg 4605 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝐴 ⊆ 𝒫 𝐵)) | |
2 | sspwuni 5103 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) |
4 | uniexg 7733 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
5 | elpwg 4605 | . . . 4 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∈ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵)) |
7 | 6 | bicomd 222 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ⊆ 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
8 | 1, 3, 7 | 3bitrd 305 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-v 3475 df-in 3955 df-ss 3965 df-pw 4604 df-uni 4909 |
This theorem is referenced by: psmeasurelem 45485 |
Copyright terms: Public domain | W3C validator |