| Step | Hyp | Ref
| Expression |
| 1 | | carageniuncllem1.k |
. . . 4
⊢ (𝜑 → 𝐾 ∈ 𝑍) |
| 2 | | carageniuncllem1.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 3 | 1, 2 | eleqtrdi 2851 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 4 | | eluzfz2 13572 |
. . 3
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ (𝑀...𝐾)) |
| 5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝐾)) |
| 6 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
| 7 | | oveq2 7439 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀)) |
| 8 | 7 | sumeq1d 15736 |
. . . . 5
⊢ (𝑘 = 𝑀 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
| 9 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐺‘𝑘) = (𝐺‘𝑀)) |
| 10 | 9 | ineq2d 4220 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘𝑀))) |
| 11 | 10 | fveq2d 6910 |
. . . . 5
⊢ (𝑘 = 𝑀 → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))) |
| 12 | 8, 11 | eqeq12d 2753 |
. . . 4
⊢ (𝑘 = 𝑀 → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀))))) |
| 13 | 12 | imbi2d 340 |
. . 3
⊢ (𝑘 = 𝑀 → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))))) |
| 14 | | oveq2 7439 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗)) |
| 15 | 14 | sumeq1d 15736 |
. . . . 5
⊢ (𝑘 = 𝑗 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
| 16 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) |
| 17 | 16 | ineq2d 4220 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘𝑗))) |
| 18 | 17 | fveq2d 6910 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
| 19 | 15, 18 | eqeq12d 2753 |
. . . 4
⊢ (𝑘 = 𝑗 → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗))))) |
| 20 | 19 | imbi2d 340 |
. . 3
⊢ (𝑘 = 𝑗 → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))))) |
| 21 | | oveq2 7439 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (𝑀...𝑘) = (𝑀...(𝑗 + 1))) |
| 22 | 21 | sumeq1d 15736 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
| 23 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = (𝑗 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑗 + 1))) |
| 24 | 23 | ineq2d 4220 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘(𝑗 + 1)))) |
| 25 | 24 | fveq2d 6910 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
| 26 | 22, 25 | eqeq12d 2753 |
. . . 4
⊢ (𝑘 = (𝑗 + 1) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1)))))) |
| 27 | 26 | imbi2d 340 |
. . 3
⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))))) |
| 28 | | oveq2 7439 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑀...𝑘) = (𝑀...𝐾)) |
| 29 | 28 | sumeq1d 15736 |
. . . . 5
⊢ (𝑘 = 𝐾 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
| 30 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝐺‘𝑘) = (𝐺‘𝐾)) |
| 31 | 30 | ineq2d 4220 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘𝐾))) |
| 32 | 31 | fveq2d 6910 |
. . . . 5
⊢ (𝑘 = 𝐾 → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))) |
| 33 | 29, 32 | eqeq12d 2753 |
. . . 4
⊢ (𝑘 = 𝐾 → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾))))) |
| 34 | 33 | imbi2d 340 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))))) |
| 35 | | eluzel2 12883 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 36 | 3, 35 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 37 | | fzsn 13606 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| 38 | 36, 37 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
| 39 | 38 | sumeq1d 15736 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ {𝑀} (𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
| 40 | | carageniuncllem1.o |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| 41 | | carageniuncllem1.x |
. . . . . . . 8
⊢ 𝑋 = ∪
dom 𝑂 |
| 42 | | carageniuncllem1.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| 43 | | carageniuncllem1.re |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
| 44 | | inss1 4237 |
. . . . . . . . 9
⊢ (𝐴 ∩ (𝐹‘𝑀)) ⊆ 𝐴 |
| 45 | 44 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑀)) ⊆ 𝐴) |
| 46 | 40, 41, 42, 43, 45 | omessre 46525 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) ∈ ℝ) |
| 47 | 46 | recnd 11289 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) ∈ ℂ) |
| 48 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (𝐹‘𝑛) = (𝐹‘𝑀)) |
| 49 | 48 | ineq2d 4220 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (𝐴 ∩ (𝐹‘𝑛)) = (𝐴 ∩ (𝐹‘𝑀))) |
| 50 | 49 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘𝑀)))) |
| 51 | 50 | sumsn 15782 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) ∈ ℂ) → Σ𝑛 ∈ {𝑀} (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘𝑀)))) |
| 52 | 36, 47, 51 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ {𝑀} (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘𝑀)))) |
| 53 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐸‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐸‘𝑀)))) |
| 54 | | carageniuncllem1.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) |
| 55 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → (𝐸‘𝑛) = (𝐸‘𝑀)) |
| 56 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑀 → (𝑀..^𝑛) = (𝑀..^𝑀)) |
| 57 | 56 | iuneq1d 5019 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) |
| 58 | 55, 57 | difeq12d 4127 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖)) = ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖))) |
| 59 | | uzid 12893 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 60 | 36, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 61 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
| 62 | 61 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘𝑀) = 𝑍) |
| 63 | 60, 62 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 64 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐸‘𝑀) ∈ V |
| 65 | | difexg 5329 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝑀) ∈ V → ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) ∈ V) |
| 66 | 64, 65 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) ∈ V |
| 67 | 66 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) ∈ V) |
| 68 | 54, 58, 63, 67 | fvmptd3 7039 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) = ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖))) |
| 69 | | fzo0 13723 |
. . . . . . . . . . . . 13
⊢ (𝑀..^𝑀) = ∅ |
| 70 | | iuneq1 5008 |
. . . . . . . . . . . . 13
⊢ ((𝑀..^𝑀) = ∅ → ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖) = ∪ 𝑖 ∈ ∅ (𝐸‘𝑖)) |
| 71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖) = ∪ 𝑖 ∈ ∅ (𝐸‘𝑖) |
| 72 | | 0iun 5063 |
. . . . . . . . . . . 12
⊢ ∪ 𝑖 ∈ ∅ (𝐸‘𝑖) = ∅ |
| 73 | 71, 72 | eqtri 2765 |
. . . . . . . . . . 11
⊢ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖) = ∅ |
| 74 | 73 | difeq2i 4123 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) = ((𝐸‘𝑀) ∖ ∅) |
| 75 | 74 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) = ((𝐸‘𝑀) ∖ ∅)) |
| 76 | | dif0 4378 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑀) ∖ ∅) = (𝐸‘𝑀) |
| 77 | 76 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘𝑀) ∖ ∅) = (𝐸‘𝑀)) |
| 78 | 68, 75, 77 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑀) = (𝐸‘𝑀)) |
| 79 | 78 | ineq2d 4220 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑀)) = (𝐴 ∩ (𝐸‘𝑀))) |
| 80 | 79 | fveq2d 6910 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐸‘𝑀)))) |
| 81 | | carageniuncllem1.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) |
| 82 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀)) |
| 83 | 82 | iuneq1d 5019 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
| 84 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ (𝑀...𝑀) ∈ V |
| 85 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐸‘𝑖) ∈ V |
| 86 | 84, 85 | iunex 7993 |
. . . . . . . . . . 11
⊢ ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) ∈ V |
| 87 | 86 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) ∈ V) |
| 88 | 81, 83, 63, 87 | fvmptd3 7039 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑀) = ∪
𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
| 89 | 38 | iuneq1d 5019 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) = ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖)) |
| 90 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑀 → (𝐸‘𝑖) = (𝐸‘𝑀)) |
| 91 | 90 | iunxsng 5090 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖) = (𝐸‘𝑀)) |
| 92 | 36, 91 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖) = (𝐸‘𝑀)) |
| 93 | 88, 89, 92 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑀) = (𝐸‘𝑀)) |
| 94 | 93 | ineq2d 4220 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (𝐺‘𝑀)) = (𝐴 ∩ (𝐸‘𝑀))) |
| 95 | 94 | fveq2d 6910 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐺‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐸‘𝑀)))) |
| 96 | 53, 80, 95 | 3eqtr4d 2787 |
. . . . 5
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))) |
| 97 | 39, 52, 96 | 3eqtrd 2781 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))) |
| 98 | 97 | a1i 11 |
. . 3
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀))))) |
| 99 | | simp3 1139 |
. . . . 5
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → 𝜑) |
| 100 | | simp1 1137 |
. . . . 5
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → 𝑗 ∈ (𝑀..^𝐾)) |
| 101 | | id 22 |
. . . . . . 7
⊢ ((𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗))))) |
| 102 | 101 | imp 406 |
. . . . . 6
⊢ (((𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
| 103 | 102 | 3adant1 1131 |
. . . . 5
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
| 104 | | elfzouz 13703 |
. . . . . . . . 9
⊢ (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 105 | 104 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 106 | 40 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → 𝑂 ∈ OutMeas) |
| 107 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → 𝐴 ⊆ 𝑋) |
| 108 | 43 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘𝐴) ∈ ℝ) |
| 109 | | inss1 4237 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝐴 |
| 110 | 109 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝐴) |
| 111 | 106, 41, 107, 108, 110 | omessre 46525 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
| 112 | 111 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℂ) |
| 113 | 112 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℂ) |
| 114 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑗 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑗 + 1))) |
| 115 | 114 | ineq2d 4220 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → (𝐴 ∩ (𝐹‘𝑛)) = (𝐴 ∩ (𝐹‘(𝑗 + 1)))) |
| 116 | 115 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) |
| 117 | 105, 113,
116 | fsump1 15792 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
| 118 | 117 | 3adant3 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
| 119 | | oveq1 7438 |
. . . . . . 7
⊢
(Σ𝑛 ∈
(𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗))) → (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
| 120 | 119 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
| 121 | | fzssp1 13607 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) |
| 122 | | iunss1 5006 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) |
| 124 | 123 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
| 125 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝑀...𝑛) = (𝑀...𝑗)) |
| 126 | 125 | iuneq1d 5019 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
| 127 | 104, 2 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ 𝑍) |
| 128 | | ovex 7464 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀...𝑗) ∈ V |
| 129 | 128, 85 | iunex 7993 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ V |
| 130 | 129 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ V) |
| 131 | 81, 126, 127, 130 | fvmptd3 7039 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘𝑗) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
| 132 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑗 + 1) → (𝑀...𝑛) = (𝑀...(𝑗 + 1))) |
| 133 | 132 | iuneq1d 5019 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
| 134 | | peano2uz 12943 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
| 135 | 104, 134 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
| 136 | 2 | eqcomi 2746 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑀) = 𝑍 |
| 137 | 135, 136 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑗 + 1) ∈ 𝑍) |
| 138 | | ovex 7464 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀...(𝑗 + 1)) ∈ V |
| 139 | 138, 85 | iunex 7993 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) ∈ V |
| 140 | 139 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) ∈ V) |
| 141 | 81, 133, 137, 140 | fvmptd3 7039 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘(𝑗 + 1)) = ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
| 142 | 131, 141 | sseq12d 4017 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐺‘𝑗) ⊆ (𝐺‘(𝑗 + 1)) ↔ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖))) |
| 143 | 124, 142 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘𝑗) ⊆ (𝐺‘(𝑗 + 1))) |
| 144 | | inabs3 45061 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑗) ⊆ (𝐺‘(𝑗 + 1)) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) = (𝐴 ∩ (𝐺‘𝑗))) |
| 145 | 143, 144 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) = (𝐴 ∩ (𝐺‘𝑗))) |
| 146 | 145 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
| 147 | 146 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑂‘(𝐴 ∩ (𝐺‘𝑗))) = (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)))) |
| 148 | 147 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘(𝐴 ∩ (𝐺‘𝑗))) = (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)))) |
| 149 | | elfzoelz 13699 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ ℤ) |
| 150 | | fzval3 13773 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℤ → (𝑀...𝑗) = (𝑀..^(𝑗 + 1))) |
| 151 | 149, 150 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑀...𝑗) = (𝑀..^(𝑗 + 1))) |
| 152 | 151 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑀..^(𝑗 + 1)) = (𝑀...𝑗)) |
| 153 | 152 | iuneq1d 5019 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
| 154 | 153 | difeq2d 4126 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 155 | 154 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 156 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → (𝐸‘𝑛) = (𝐸‘(𝑗 + 1))) |
| 157 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑗 + 1) → (𝑀..^𝑛) = (𝑀..^(𝑗 + 1))) |
| 158 | 157 | iuneq1d 5019 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) |
| 159 | 156, 158 | difeq12d 4127 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑗 + 1) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖))) |
| 160 | | fvex 6919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸‘(𝑗 + 1)) ∈ V |
| 161 | | difexg 5329 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸‘(𝑗 + 1)) ∈ V → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) ∈ V) |
| 162 | 160, 161 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) ∈ V |
| 163 | 162 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) ∈ V) |
| 164 | 54, 159, 137, 163 | fvmptd3 7039 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐹‘(𝑗 + 1)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖))) |
| 165 | 164 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐹‘(𝑗 + 1)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖))) |
| 166 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖(𝐸‘(𝑗 + 1)) |
| 167 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑗 + 1) → (𝐸‘𝑖) = (𝐸‘(𝑗 + 1))) |
| 168 | 166, 104,
167 | iunp1 45071 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) = (∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1)))) |
| 169 | 141, 168 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘(𝑗 + 1)) = (∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1)))) |
| 170 | 169, 131 | difeq12d 4127 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)) = ((∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 171 | | difundir 4291 |
. . . . . . . . . . . . . . . . 17
⊢
((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ((∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∖ ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) ∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 172 | | difid 4376 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∖ ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ∅ |
| 173 | 172 | uneq1i 4164 |
. . . . . . . . . . . . . . . . 17
⊢
((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∖ ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) ∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) = (∅ ∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 174 | | 0un 4396 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
| 175 | 171, 173,
174 | 3eqtri 2769 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
| 176 | 175 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 177 | 170, 176 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 178 | 177 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
| 179 | 155, 165,
178 | 3eqtr4d 2787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐹‘(𝑗 + 1)) = ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗))) |
| 180 | 179 | ineq2d 4220 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐴 ∩ (𝐹‘(𝑗 + 1))) = (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)))) |
| 181 | | indif2 4281 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗))) = ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) |
| 182 | 181 | eqcomi 2746 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) = (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗))) |
| 183 | 182 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) = (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)))) |
| 184 | 180, 183 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐴 ∩ (𝐹‘(𝑗 + 1))) = ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))) |
| 185 | 184 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))) = (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) |
| 186 | 148, 185 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
| 187 | | inss1 4237 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) ⊆ (𝐴 ∩ (𝐺‘(𝑗 + 1))) |
| 188 | | inss1 4237 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∩ (𝐺‘(𝑗 + 1))) ⊆ 𝐴 |
| 189 | 187, 188 | sstri 3993 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) ⊆ 𝐴 |
| 190 | 189 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) ⊆ 𝐴) |
| 191 | 40, 41, 42, 43, 190 | omessre 46525 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) ∈ ℝ) |
| 192 | 191 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) ∈ ℝ) |
| 193 | 40 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → 𝑂 ∈ OutMeas) |
| 194 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → 𝐴 ⊆ 𝑋) |
| 195 | 43 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘𝐴) ∈ ℝ) |
| 196 | | difss 4136 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) ⊆ (𝐴 ∩ (𝐺‘(𝑗 + 1))) |
| 197 | 196, 188 | sstri 3993 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) ⊆ 𝐴 |
| 198 | 197 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) ⊆ 𝐴) |
| 199 | 193, 41, 194, 195, 198 | omessre 46525 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))) ∈ ℝ) |
| 200 | | rexadd 13274 |
. . . . . . . . . 10
⊢ (((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) ∈ ℝ ∧ (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))) ∈ ℝ) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
| 201 | 192, 199,
200 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
| 202 | 201 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
| 203 | | carageniuncllem1.s |
. . . . . . . . 9
⊢ 𝑆 = (CaraGen‘𝑂) |
| 204 | 131 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐺‘𝑗) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
| 205 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖𝜑 |
| 206 | | fzfid 14014 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...𝑗) ∈ Fin) |
| 207 | | carageniuncllem1.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
| 208 | 207 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑗)) → 𝐸:𝑍⟶𝑆) |
| 209 | | elfzuz 13560 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀...𝑗) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 210 | 136 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀...𝑗) → (ℤ≥‘𝑀) = 𝑍) |
| 211 | 209, 210 | eleqtrd 2843 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑀...𝑗) → 𝑖 ∈ 𝑍) |
| 212 | 211 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑗)) → 𝑖 ∈ 𝑍) |
| 213 | 208, 212 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑗)) → (𝐸‘𝑖) ∈ 𝑆) |
| 214 | 205, 40, 203, 206, 213 | caragenfiiuncl 46530 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ 𝑆) |
| 215 | 214 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ 𝑆) |
| 216 | 204, 215 | eqeltrd 2841 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐺‘𝑗) ∈ 𝑆) |
| 217 | 42 | ssinss1d 4247 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∩ (𝐺‘(𝑗 + 1))) ⊆ 𝑋) |
| 218 | 217 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐴 ∩ (𝐺‘(𝑗 + 1))) ⊆ 𝑋) |
| 219 | 193, 203,
41, 216, 218 | caragensplit 46515 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
| 220 | 186, 202,
219 | 3eqtrd 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
| 221 | 220 | 3adant3 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
| 222 | 118, 120,
221 | 3eqtrd 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
| 223 | 99, 100, 103, 222 | syl3anc 1373 |
. . . 4
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
| 224 | 223 | 3exp 1120 |
. . 3
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → (𝜑 → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))))) |
| 225 | 13, 20, 27, 34, 98, 224 | fzind2 13824 |
. 2
⊢ (𝐾 ∈ (𝑀...𝐾) → (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾))))) |
| 226 | 5, 6, 225 | sylc 65 |
1
⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))) |