Step | Hyp | Ref
| Expression |
1 | | carageniuncllem1.k |
. . . 4
⊢ (𝜑 → 𝐾 ∈ 𝑍) |
2 | | carageniuncllem1.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 1, 2 | eleqtrdi 2849 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
4 | | eluzfz2 13264 |
. . 3
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ (𝑀...𝐾)) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝐾)) |
6 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
7 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀)) |
8 | 7 | sumeq1d 15413 |
. . . . 5
⊢ (𝑘 = 𝑀 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
9 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐺‘𝑘) = (𝐺‘𝑀)) |
10 | 9 | ineq2d 4146 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘𝑀))) |
11 | 10 | fveq2d 6778 |
. . . . 5
⊢ (𝑘 = 𝑀 → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))) |
12 | 8, 11 | eqeq12d 2754 |
. . . 4
⊢ (𝑘 = 𝑀 → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀))))) |
13 | 12 | imbi2d 341 |
. . 3
⊢ (𝑘 = 𝑀 → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))))) |
14 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗)) |
15 | 14 | sumeq1d 15413 |
. . . . 5
⊢ (𝑘 = 𝑗 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
16 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) |
17 | 16 | ineq2d 4146 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘𝑗))) |
18 | 17 | fveq2d 6778 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
19 | 15, 18 | eqeq12d 2754 |
. . . 4
⊢ (𝑘 = 𝑗 → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗))))) |
20 | 19 | imbi2d 341 |
. . 3
⊢ (𝑘 = 𝑗 → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))))) |
21 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (𝑀...𝑘) = (𝑀...(𝑗 + 1))) |
22 | 21 | sumeq1d 15413 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
23 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = (𝑗 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑗 + 1))) |
24 | 23 | ineq2d 4146 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘(𝑗 + 1)))) |
25 | 24 | fveq2d 6778 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
26 | 22, 25 | eqeq12d 2754 |
. . . 4
⊢ (𝑘 = (𝑗 + 1) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1)))))) |
27 | 26 | imbi2d 341 |
. . 3
⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))))) |
28 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑀...𝑘) = (𝑀...𝐾)) |
29 | 28 | sumeq1d 15413 |
. . . . 5
⊢ (𝑘 = 𝐾 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
30 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝐺‘𝑘) = (𝐺‘𝐾)) |
31 | 30 | ineq2d 4146 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝐴 ∩ (𝐺‘𝑘)) = (𝐴 ∩ (𝐺‘𝐾))) |
32 | 31 | fveq2d 6778 |
. . . . 5
⊢ (𝑘 = 𝐾 → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))) |
33 | 29, 32 | eqeq12d 2754 |
. . . 4
⊢ (𝑘 = 𝐾 → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ↔ Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾))))) |
34 | 33 | imbi2d 341 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) ↔ (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))))) |
35 | | eluzel2 12587 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
36 | 3, 35 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
37 | | fzsn 13298 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
38 | 36, 37 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
39 | 38 | sumeq1d 15413 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = Σ𝑛 ∈ {𝑀} (𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
40 | | carageniuncllem1.o |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
41 | | carageniuncllem1.x |
. . . . . . . 8
⊢ 𝑋 = ∪
dom 𝑂 |
42 | | carageniuncllem1.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
43 | | carageniuncllem1.re |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
44 | | inss1 4162 |
. . . . . . . . 9
⊢ (𝐴 ∩ (𝐹‘𝑀)) ⊆ 𝐴 |
45 | 44 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑀)) ⊆ 𝐴) |
46 | 40, 41, 42, 43, 45 | omessre 44048 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) ∈ ℝ) |
47 | 46 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) ∈ ℂ) |
48 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (𝐹‘𝑛) = (𝐹‘𝑀)) |
49 | 48 | ineq2d 4146 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (𝐴 ∩ (𝐹‘𝑛)) = (𝐴 ∩ (𝐹‘𝑀))) |
50 | 49 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘𝑀)))) |
51 | 50 | sumsn 15458 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) ∈ ℂ) → Σ𝑛 ∈ {𝑀} (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘𝑀)))) |
52 | 36, 47, 51 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ {𝑀} (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘𝑀)))) |
53 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐸‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐸‘𝑀)))) |
54 | | carageniuncllem1.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) |
55 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → (𝐸‘𝑛) = (𝐸‘𝑀)) |
56 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑀 → (𝑀..^𝑛) = (𝑀..^𝑀)) |
57 | 56 | iuneq1d 4951 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) |
58 | 55, 57 | difeq12d 4058 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖)) = ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖))) |
59 | | uzid 12597 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
60 | 36, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
61 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
62 | 61 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘𝑀) = 𝑍) |
63 | 60, 62 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
64 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝐸‘𝑀) ∈ V |
65 | | difexg 5251 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝑀) ∈ V → ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) ∈ V) |
66 | 64, 65 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) ∈ V |
67 | 66 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) ∈ V) |
68 | 54, 58, 63, 67 | fvmptd3 6898 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) = ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖))) |
69 | | fzo0 13411 |
. . . . . . . . . . . . 13
⊢ (𝑀..^𝑀) = ∅ |
70 | | iuneq1 4940 |
. . . . . . . . . . . . 13
⊢ ((𝑀..^𝑀) = ∅ → ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖) = ∪ 𝑖 ∈ ∅ (𝐸‘𝑖)) |
71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖) = ∪ 𝑖 ∈ ∅ (𝐸‘𝑖) |
72 | | 0iun 4992 |
. . . . . . . . . . . 12
⊢ ∪ 𝑖 ∈ ∅ (𝐸‘𝑖) = ∅ |
73 | 71, 72 | eqtri 2766 |
. . . . . . . . . . 11
⊢ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖) = ∅ |
74 | 73 | difeq2i 4054 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) = ((𝐸‘𝑀) ∖ ∅) |
75 | 74 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘𝑀) ∖ ∪ 𝑖 ∈ (𝑀..^𝑀)(𝐸‘𝑖)) = ((𝐸‘𝑀) ∖ ∅)) |
76 | | dif0 4306 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑀) ∖ ∅) = (𝐸‘𝑀) |
77 | 76 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘𝑀) ∖ ∅) = (𝐸‘𝑀)) |
78 | 68, 75, 77 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑀) = (𝐸‘𝑀)) |
79 | 78 | ineq2d 4146 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑀)) = (𝐴 ∩ (𝐸‘𝑀))) |
80 | 79 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐸‘𝑀)))) |
81 | | carageniuncllem1.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) |
82 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀)) |
83 | 82 | iuneq1d 4951 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
84 | | ovex 7308 |
. . . . . . . . . . . 12
⊢ (𝑀...𝑀) ∈ V |
85 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝐸‘𝑖) ∈ V |
86 | 84, 85 | iunex 7811 |
. . . . . . . . . . 11
⊢ ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) ∈ V |
87 | 86 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) ∈ V) |
88 | 81, 83, 63, 87 | fvmptd3 6898 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑀) = ∪
𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
89 | 38 | iuneq1d 4951 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) = ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖)) |
90 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑀 → (𝐸‘𝑖) = (𝐸‘𝑀)) |
91 | 90 | iunxsng 5019 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖) = (𝐸‘𝑀)) |
92 | 36, 91 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖) = (𝐸‘𝑀)) |
93 | 88, 89, 92 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑀) = (𝐸‘𝑀)) |
94 | 93 | ineq2d 4146 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (𝐺‘𝑀)) = (𝐴 ∩ (𝐸‘𝑀))) |
95 | 94 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐺‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐸‘𝑀)))) |
96 | 53, 80, 95 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑀))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))) |
97 | 39, 52, 96 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀)))) |
98 | 97 | a1i 11 |
. . 3
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝜑 → Σ𝑛 ∈ (𝑀...𝑀)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑀))))) |
99 | | simp3 1137 |
. . . . 5
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → 𝜑) |
100 | | simp1 1135 |
. . . . 5
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → 𝑗 ∈ (𝑀..^𝐾)) |
101 | | id 22 |
. . . . . . 7
⊢ ((𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗))))) |
102 | 101 | imp 407 |
. . . . . 6
⊢ (((𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
103 | 102 | 3adant1 1129 |
. . . . 5
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
104 | | elfzouz 13391 |
. . . . . . . . 9
⊢ (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ (ℤ≥‘𝑀)) |
105 | 104 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
106 | 40 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → 𝑂 ∈ OutMeas) |
107 | 42 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → 𝐴 ⊆ 𝑋) |
108 | 43 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘𝐴) ∈ ℝ) |
109 | | inss1 4162 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝐴 |
110 | 109 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝐴) |
111 | 106, 41, 107, 108, 110 | omessre 44048 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
112 | 111 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℂ) |
113 | 112 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) ∧ 𝑛 ∈ (𝑀...(𝑗 + 1))) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℂ) |
114 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑗 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑗 + 1))) |
115 | 114 | ineq2d 4146 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → (𝐴 ∩ (𝐹‘𝑛)) = (𝐴 ∩ (𝐹‘(𝑗 + 1)))) |
116 | 115 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) |
117 | 105, 113,
116 | fsump1 15468 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
118 | 117 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
119 | | oveq1 7282 |
. . . . . . 7
⊢
(Σ𝑛 ∈
(𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗))) → (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
120 | 119 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → (Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))))) |
121 | | fzssp1 13299 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) |
122 | | iunss1 4938 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) |
124 | 123 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
125 | | oveq2 7283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝑀...𝑛) = (𝑀...𝑗)) |
126 | 125 | iuneq1d 4951 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
127 | 104, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ 𝑍) |
128 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀...𝑗) ∈ V |
129 | 128, 85 | iunex 7811 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ V |
130 | 129 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ V) |
131 | 81, 126, 127, 130 | fvmptd3 6898 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘𝑗) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
132 | | oveq2 7283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑗 + 1) → (𝑀...𝑛) = (𝑀...(𝑗 + 1))) |
133 | 132 | iuneq1d 4951 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
134 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
135 | 104, 134 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
136 | 2 | eqcomi 2747 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑀) = 𝑍 |
137 | 135, 136 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑗 + 1) ∈ 𝑍) |
138 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀...(𝑗 + 1)) ∈ V |
139 | 138, 85 | iunex 7811 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) ∈ V |
140 | 139 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) ∈ V) |
141 | 81, 133, 137, 140 | fvmptd3 6898 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘(𝑗 + 1)) = ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖)) |
142 | 131, 141 | sseq12d 3954 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐺‘𝑗) ⊆ (𝐺‘(𝑗 + 1)) ↔ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ⊆ ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖))) |
143 | 124, 142 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘𝑗) ⊆ (𝐺‘(𝑗 + 1))) |
144 | | inabs3 42604 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑗) ⊆ (𝐺‘(𝑗 + 1)) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) = (𝐴 ∩ (𝐺‘𝑗))) |
145 | 143, 144 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) = (𝐴 ∩ (𝐺‘𝑗))) |
146 | 145 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) |
147 | 146 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑂‘(𝐴 ∩ (𝐺‘𝑗))) = (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)))) |
148 | 147 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘(𝐴 ∩ (𝐺‘𝑗))) = (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)))) |
149 | | elfzoelz 13387 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ ℤ) |
150 | | fzval3 13456 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℤ → (𝑀...𝑗) = (𝑀..^(𝑗 + 1))) |
151 | 149, 150 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑀...𝑗) = (𝑀..^(𝑗 + 1))) |
152 | 151 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝑀..^(𝑗 + 1)) = (𝑀...𝑗)) |
153 | 152 | iuneq1d 4951 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
154 | 153 | difeq2d 4057 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
155 | 154 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
156 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → (𝐸‘𝑛) = (𝐸‘(𝑗 + 1))) |
157 | | oveq2 7283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑗 + 1) → (𝑀..^𝑛) = (𝑀..^(𝑗 + 1))) |
158 | 157 | iuneq1d 4951 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) |
159 | 156, 158 | difeq12d 4058 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑗 + 1) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖))) |
160 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸‘(𝑗 + 1)) ∈ V |
161 | | difexg 5251 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸‘(𝑗 + 1)) ∈ V → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) ∈ V) |
162 | 160, 161 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) ∈ V |
163 | 162 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖)) ∈ V) |
164 | 54, 159, 137, 163 | fvmptd3 6898 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐹‘(𝑗 + 1)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖))) |
165 | 164 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐹‘(𝑗 + 1)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀..^(𝑗 + 1))(𝐸‘𝑖))) |
166 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖(𝐸‘(𝑗 + 1)) |
167 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑗 + 1) → (𝐸‘𝑖) = (𝐸‘(𝑗 + 1))) |
168 | 166, 104,
167 | iunp1 42614 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝐾) → ∪
𝑖 ∈ (𝑀...(𝑗 + 1))(𝐸‘𝑖) = (∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1)))) |
169 | 141, 168 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝐾) → (𝐺‘(𝑗 + 1)) = (∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1)))) |
170 | 169, 131 | difeq12d 4058 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)) = ((∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
171 | | difundir 4214 |
. . . . . . . . . . . . . . . . 17
⊢
((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ((∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∖ ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) ∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
172 | | difid 4304 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∖ ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ∅ |
173 | 172 | uneq1i 4093 |
. . . . . . . . . . . . . . . . 17
⊢
((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∖ ∪
𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) ∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) = (∅ ∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
174 | | 0un 4326 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∪ ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
175 | 171, 173,
174 | 3eqtri 2770 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
176 | 175 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∪ (𝐸‘(𝑗 + 1))) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
177 | 170, 176 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
178 | 177 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)) = ((𝐸‘(𝑗 + 1)) ∖ ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖))) |
179 | 155, 165,
178 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐹‘(𝑗 + 1)) = ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗))) |
180 | 179 | ineq2d 4146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐴 ∩ (𝐹‘(𝑗 + 1))) = (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)))) |
181 | | indif2 4204 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗))) = ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) |
182 | 181 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) = (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗))) |
183 | 182 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) = (𝐴 ∩ ((𝐺‘(𝑗 + 1)) ∖ (𝐺‘𝑗)))) |
184 | 180, 183 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐴 ∩ (𝐹‘(𝑗 + 1))) = ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))) |
185 | 184 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1)))) = (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) |
186 | 148, 185 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
187 | | inss1 4162 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) ⊆ (𝐴 ∩ (𝐺‘(𝑗 + 1))) |
188 | | inss1 4162 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∩ (𝐺‘(𝑗 + 1))) ⊆ 𝐴 |
189 | 187, 188 | sstri 3930 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) ⊆ 𝐴 |
190 | 189 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗)) ⊆ 𝐴) |
191 | 40, 41, 42, 43, 190 | omessre 44048 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) ∈ ℝ) |
192 | 191 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) ∈ ℝ) |
193 | 40 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → 𝑂 ∈ OutMeas) |
194 | 42 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → 𝐴 ⊆ 𝑋) |
195 | 43 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘𝐴) ∈ ℝ) |
196 | | difss 4066 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) ⊆ (𝐴 ∩ (𝐺‘(𝑗 + 1))) |
197 | 196, 188 | sstri 3930 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) ⊆ 𝐴 |
198 | 197 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)) ⊆ 𝐴) |
199 | 193, 41, 194, 195, 198 | omessre 44048 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))) ∈ ℝ) |
200 | | rexadd 12966 |
. . . . . . . . . 10
⊢ (((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) ∈ ℝ ∧ (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))) ∈ ℝ) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
201 | 192, 199,
200 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
202 | 201 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) + (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗))))) |
203 | | carageniuncllem1.s |
. . . . . . . . 9
⊢ 𝑆 = (CaraGen‘𝑂) |
204 | 131 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐺‘𝑗) = ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖)) |
205 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖𝜑 |
206 | | fzfid 13693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...𝑗) ∈ Fin) |
207 | | carageniuncllem1.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
208 | 207 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑗)) → 𝐸:𝑍⟶𝑆) |
209 | | elfzuz 13252 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀...𝑗) → 𝑖 ∈ (ℤ≥‘𝑀)) |
210 | 136 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀...𝑗) → (ℤ≥‘𝑀) = 𝑍) |
211 | 209, 210 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑀...𝑗) → 𝑖 ∈ 𝑍) |
212 | 211 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑗)) → 𝑖 ∈ 𝑍) |
213 | 208, 212 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑗)) → (𝐸‘𝑖) ∈ 𝑆) |
214 | 205, 40, 203, 206, 213 | caragenfiiuncl 44053 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ 𝑆) |
215 | 214 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ∪ 𝑖 ∈ (𝑀...𝑗)(𝐸‘𝑖) ∈ 𝑆) |
216 | 204, 215 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐺‘𝑗) ∈ 𝑆) |
217 | 42 | ssinss1d 42596 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∩ (𝐺‘(𝑗 + 1))) ⊆ 𝑋) |
218 | 217 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → (𝐴 ∩ (𝐺‘(𝑗 + 1))) ⊆ 𝑋) |
219 | 193, 203,
41, 216, 218 | caragensplit 44038 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∩ (𝐺‘𝑗))) +𝑒 (𝑂‘((𝐴 ∩ (𝐺‘(𝑗 + 1))) ∖ (𝐺‘𝑗)))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
220 | 186, 202,
219 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾)) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
221 | 220 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑗))) + (𝑂‘(𝐴 ∩ (𝐹‘(𝑗 + 1))))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
222 | 118, 120,
221 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝐾) ∧ Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
223 | 99, 100, 103, 222 | syl3anc 1370 |
. . . 4
⊢ ((𝑗 ∈ (𝑀..^𝐾) ∧ (𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) ∧ 𝜑) → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))) |
224 | 223 | 3exp 1118 |
. . 3
⊢ (𝑗 ∈ (𝑀..^𝐾) → ((𝜑 → Σ𝑛 ∈ (𝑀...𝑗)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑗)))) → (𝜑 → Σ𝑛 ∈ (𝑀...(𝑗 + 1))(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘(𝑗 + 1))))))) |
225 | 13, 20, 27, 34, 98, 224 | fzind2 13505 |
. 2
⊢ (𝐾 ∈ (𝑀...𝐾) → (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾))))) |
226 | 5, 6, 225 | sylc 65 |
1
⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))) |