Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssin0 Structured version   Visualization version   GIF version

Theorem ssin0 45065
Description: If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
ssin0 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) = ∅)

Proof of Theorem ssin0
StepHypRef Expression
1 ss2in 4244 . . . 4 ((𝐶𝐴𝐷𝐵) → (𝐶𝐷) ⊆ (𝐴𝐵))
213adant1 1130 . . 3 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) ⊆ (𝐴𝐵))
3 eqimss 4041 . . . 4 ((𝐴𝐵) = ∅ → (𝐴𝐵) ⊆ ∅)
433ad2ant1 1133 . . 3 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐴𝐵) ⊆ ∅)
52, 4sstrd 3993 . 2 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) ⊆ ∅)
6 ss0 4401 . 2 ((𝐶𝐷) ⊆ ∅ → (𝐶𝐷) = ∅)
75, 6syl 17 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  cin 3949  wss 3950  c0 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-in 3957  df-ss 3967  df-nul 4333
This theorem is referenced by:  sge0resplit  46426
  Copyright terms: Public domain W3C validator