Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssin0 Structured version   Visualization version   GIF version

Theorem ssin0 44044
Description: If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
ssin0 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) = ∅)

Proof of Theorem ssin0
StepHypRef Expression
1 ss2in 4236 . . . 4 ((𝐶𝐴𝐷𝐵) → (𝐶𝐷) ⊆ (𝐴𝐵))
213adant1 1130 . . 3 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) ⊆ (𝐴𝐵))
3 eqimss 4040 . . . 4 ((𝐴𝐵) = ∅ → (𝐴𝐵) ⊆ ∅)
433ad2ant1 1133 . . 3 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐴𝐵) ⊆ ∅)
52, 4sstrd 3992 . 2 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) ⊆ ∅)
6 ss0 4398 . 2 ((𝐶𝐷) ⊆ ∅ → (𝐶𝐷) = ∅)
75, 6syl 17 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  cin 3947  wss 3948  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  sge0resplit  45421
  Copyright terms: Public domain W3C validator