| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssin0 | Structured version Visualization version GIF version | ||
| Description: If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ssin0 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2in 4194 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) |
| 3 | eqimss 3989 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐴 ∩ 𝐵) ⊆ ∅) |
| 5 | 2, 4 | sstrd 3941 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∅) |
| 6 | ss0 4351 | . 2 ⊢ ((𝐶 ∩ 𝐷) ⊆ ∅ → (𝐶 ∩ 𝐷) = ∅) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: sge0resplit 46566 |
| Copyright terms: Public domain | W3C validator |