|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssin0 | Structured version Visualization version GIF version | ||
| Description: If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| ssin0 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ss2in 4244 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) | 
| 3 | eqimss 4041 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐴 ∩ 𝐵) ⊆ ∅) | 
| 5 | 2, 4 | sstrd 3993 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∅) | 
| 6 | ss0 4401 | . 2 ⊢ ((𝐶 ∩ 𝐷) ⊆ ∅ → (𝐶 ∩ 𝐷) = ∅) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-in 3957 df-ss 3967 df-nul 4333 | 
| This theorem is referenced by: sge0resplit 46426 | 
| Copyright terms: Public domain | W3C validator |