![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssin0 | Structured version Visualization version GIF version |
Description: If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ssin0 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2in 4236 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) | |
2 | 1 | 3adant1 1129 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) |
3 | eqimss 4040 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
4 | 3 | 3ad2ant1 1132 | . . 3 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐴 ∩ 𝐵) ⊆ ∅) |
5 | 2, 4 | sstrd 3992 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∅) |
6 | ss0 4398 | . 2 ⊢ ((𝐶 ∩ 𝐷) ⊆ ∅ → (𝐶 ∩ 𝐷) = ∅) | |
7 | 5, 6 | syl 17 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 |
This theorem is referenced by: sge0resplit 45584 |
Copyright terms: Public domain | W3C validator |