| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version | ||
| Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
| 2 | elin 3947 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 5 | elin 3947 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
| 7 | elin 3947 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
| 9 | 8 | ineqri 4192 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 |
| This theorem is referenced by: in12 4209 in32 4210 in4 4214 indif2 4261 difun1 4279 dfrab3ss 4303 dfif4 4521 resres 5984 inres 5989 imainrect 6175 cnvrescnv 6189 predidm 6320 onfr 6396 fresaun 6754 fresaunres2 6755 fimacnvinrn2 7067 epfrs 9750 incexclem 15857 sadeq 16496 smuval2 16506 smumul 16517 ressinbas 17271 ressress 17273 resscatc 18127 sylow2a 19605 ablfac1eu 20061 ressmplbas2 21990 restco 23107 restopnb 23118 kgeni 23480 hausdiag 23588 fclsrest 23967 clsocv 25207 itg2cnlem2 25720 rplogsum 27495 chjassi 31472 pjoml2i 31571 cmcmlem 31577 cmbr3i 31586 fh1 31604 fh2 31605 pj3lem1 32192 dmdbr5 32294 mdslmd3i 32318 mdexchi 32321 atabsi 32387 dmdbr6ati 32409 prsss 33952 inelcarsg 34348 carsgclctunlem1 34354 msrid 35572 redundss3 38651 refrelsredund4 38655 osumcllem9N 39988 dihmeetbclemN 41328 dihmeetlem11N 41341 wfac8prim 45002 inabs3 45060 uzinico2 45570 caragenuncllem 46521 resinsn 48827 restclsseplem 48869 |
| Copyright terms: Public domain | W3C validator |