![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version |
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 462 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 4023 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
3 | 2 | anbi2i 616 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | 1, 3 | bitr4i 270 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
5 | elin 4023 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
6 | 5 | anbi1i 617 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
7 | elin 4023 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
8 | 4, 6, 7 | 3bitr4i 295 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
9 | 8 | ineqri 4033 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∩ cin 3797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-in 3805 |
This theorem is referenced by: in12 4049 in32 4050 in4 4054 indif2 4100 difun1 4117 dfrab3ss 4134 dfif4 4321 resres 5646 inres 5651 imainrect 5816 predidm 5942 onfr 6002 fresaun 6312 fresaunres2 6313 fimacnvinrn2 6598 epfrs 8884 incexclem 14942 sadeq 15567 smuval2 15577 smumul 15588 ressinbas 16299 ressress 16302 resscatc 17107 sylow2a 18385 ablfac1eu 18826 ressmplbas2 19816 restco 21339 restopnb 21350 kgeni 21711 hausdiag 21819 fclsrest 22198 clsocv 23418 itg2cnlem2 23928 rplogsum 25629 chjassi 28889 pjoml2i 28988 cmcmlem 28994 cmbr3i 29003 fh1 29021 fh2 29022 pj3lem1 29609 dmdbr5 29711 mdslmd3i 29735 mdexchi 29738 atabsi 29804 dmdbr6ati 29826 prsss 30496 inelcarsg 30907 carsgclctunlem1 30913 msrid 31977 redss3 34910 refrelsred4 34914 osumcllem9N 36032 dihmeetbclemN 37372 dihmeetlem11N 37385 inabs3 40034 uzinico2 40577 caragenuncllem 41513 |
Copyright terms: Public domain | W3C validator |