Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version |
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 469 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 3908 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | 1, 3 | bitr4i 277 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
5 | elin 3908 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
7 | elin 3908 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
8 | 4, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
9 | 8 | ineqri 4144 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∩ cin 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 |
This theorem is referenced by: in12 4160 in32 4161 in4 4165 indif2 4210 difun1 4229 dfrab3ss 4252 dfif4 4480 resres 5903 inres 5908 imainrect 6083 cnvrescnv 6097 predidm 6228 onfr 6304 fresaun 6643 fresaunres2 6644 fimacnvinrn2 6947 epfrs 9489 incexclem 15546 sadeq 16177 smuval2 16187 smumul 16198 ressinbas 16953 ressress 16956 resscatc 17822 sylow2a 19222 ablfac1eu 19674 ressmplbas2 21226 restco 22313 restopnb 22324 kgeni 22686 hausdiag 22794 fclsrest 23173 clsocv 24412 itg2cnlem2 24925 rplogsum 26673 chjassi 29844 pjoml2i 29943 cmcmlem 29949 cmbr3i 29958 fh1 29976 fh2 29977 pj3lem1 30564 dmdbr5 30666 mdslmd3i 30690 mdexchi 30693 atabsi 30759 dmdbr6ati 30781 prsss 31862 inelcarsg 32274 carsgclctunlem1 32280 msrid 33503 redundss3 36737 refrelsredund4 36741 osumcllem9N 37974 dihmeetbclemN 39314 dihmeetlem11N 39327 inabs3 42574 uzinico2 43071 caragenuncllem 44021 restclsseplem 46177 |
Copyright terms: Public domain | W3C validator |