MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4177
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3913 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 623 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 278 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3913 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3913 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4161 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3904
This theorem is referenced by:  in12  4178  in32  4179  in4  4183  indif2  4230  difun1  4248  dfrab3ss  4272  dfif4  4490  resres  5946  inres  5951  imainrect  6134  cnvrescnv  6148  predidm  6279  onfr  6351  fresaun  6700  fresaunres2  6701  fimacnvinrn2  7011  epfrs  9627  incexclem  15749  sadeq  16389  smuval2  16399  smumul  16410  ressinbas  17162  ressress  17164  resscatc  18022  sylow2a  19537  ablfac1eu  19993  ressmplbas2  21968  restco  23085  restopnb  23096  kgeni  23458  hausdiag  23566  fclsrest  23945  clsocv  25183  itg2cnlem2  25696  rplogsum  27471  chjassi  31473  pjoml2i  31572  cmcmlem  31578  cmbr3i  31587  fh1  31605  fh2  31606  pj3lem1  32193  dmdbr5  32295  mdslmd3i  32319  mdexchi  32322  atabsi  32388  dmdbr6ati  32410  prsss  33936  inelcarsg  34331  carsgclctunlem1  34337  msrid  35596  redundss3  38730  refrelsredund4  38734  osumcllem9N  40069  dihmeetbclemN  41409  dihmeetlem11N  41422  wfac8prim  45100  inabs3  45158  uzinico2  45666  caragenuncllem  46615  resinsn  48977  restclsseplem  49020
  Copyright terms: Public domain W3C validator