MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4219
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3964 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 622 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 278 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3964 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 623 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3964 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4204 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2105  cin 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-in 3955
This theorem is referenced by:  in12  4220  in32  4221  in4  4225  indif2  4270  difun1  4289  dfrab3ss  4312  dfif4  4543  resres  5994  inres  5999  imainrect  6180  cnvrescnv  6194  predidm  6327  onfr  6403  fresaun  6762  fresaunres2  6763  fimacnvinrn2  7074  epfrs  9732  incexclem  15789  sadeq  16420  smuval2  16430  smumul  16441  ressinbas  17197  ressress  17200  resscatc  18069  sylow2a  19535  ablfac1eu  19991  ressmplbas2  21893  restco  22988  restopnb  22999  kgeni  23361  hausdiag  23469  fclsrest  23848  clsocv  25098  itg2cnlem2  25612  rplogsum  27373  chjassi  31172  pjoml2i  31271  cmcmlem  31277  cmbr3i  31286  fh1  31304  fh2  31305  pj3lem1  31892  dmdbr5  31994  mdslmd3i  32018  mdexchi  32021  atabsi  32087  dmdbr6ati  32109  prsss  33360  inelcarsg  33774  carsgclctunlem1  33780  msrid  35000  redundss3  37962  refrelsredund4  37966  osumcllem9N  39299  dihmeetbclemN  40639  dihmeetlem11N  40652  inabs3  44205  uzinico2  44734  caragenuncllem  45687  restclsseplem  47709
  Copyright terms: Public domain W3C validator