MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4191
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3930 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 623 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 278 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3930 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3930 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4175 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921
This theorem is referenced by:  in12  4192  in32  4193  in4  4197  indif2  4244  difun1  4262  dfrab3ss  4286  dfif4  4504  resres  5963  inres  5968  imainrect  6154  cnvrescnv  6168  predidm  6299  onfr  6371  fresaun  6731  fresaunres2  6732  fimacnvinrn2  7044  epfrs  9684  incexclem  15802  sadeq  16442  smuval2  16452  smumul  16463  ressinbas  17215  ressress  17217  resscatc  18071  sylow2a  19549  ablfac1eu  20005  ressmplbas2  21934  restco  23051  restopnb  23062  kgeni  23424  hausdiag  23532  fclsrest  23911  clsocv  25150  itg2cnlem2  25663  rplogsum  27438  chjassi  31415  pjoml2i  31514  cmcmlem  31520  cmbr3i  31529  fh1  31547  fh2  31548  pj3lem1  32135  dmdbr5  32237  mdslmd3i  32261  mdexchi  32264  atabsi  32330  dmdbr6ati  32352  prsss  33906  inelcarsg  34302  carsgclctunlem1  34308  msrid  35532  redundss3  38619  refrelsredund4  38623  osumcllem9N  39958  dihmeetbclemN  41298  dihmeetlem11N  41311  wfac8prim  44992  inabs3  45050  uzinico2  45559  caragenuncllem  46510  resinsn  48860  restclsseplem  48903
  Copyright terms: Public domain W3C validator