![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version |
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 3979 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
5 | elin 3979 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
7 | elin 3979 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
8 | 4, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
9 | 8 | ineqri 4220 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 |
This theorem is referenced by: in12 4237 in32 4238 in4 4242 indif2 4287 difun1 4305 dfrab3ss 4329 dfif4 4546 resres 6013 inres 6018 imainrect 6203 cnvrescnv 6217 predidm 6349 onfr 6425 fresaun 6780 fresaunres2 6781 fimacnvinrn2 7092 epfrs 9769 incexclem 15869 sadeq 16506 smuval2 16516 smumul 16527 ressinbas 17291 ressress 17294 resscatc 18163 sylow2a 19652 ablfac1eu 20108 ressmplbas2 22063 restco 23188 restopnb 23199 kgeni 23561 hausdiag 23669 fclsrest 24048 clsocv 25298 itg2cnlem2 25812 rplogsum 27586 chjassi 31515 pjoml2i 31614 cmcmlem 31620 cmbr3i 31629 fh1 31647 fh2 31648 pj3lem1 32235 dmdbr5 32337 mdslmd3i 32361 mdexchi 32364 atabsi 32430 dmdbr6ati 32452 prsss 33877 inelcarsg 34293 carsgclctunlem1 34299 msrid 35530 redundss3 38610 refrelsredund4 38614 osumcllem9N 39947 dihmeetbclemN 41287 dihmeetlem11N 41300 inabs3 44996 uzinico2 45515 caragenuncllem 46468 restclsseplem 48711 |
Copyright terms: Public domain | W3C validator |