| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version | ||
| Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
| 2 | elin 3930 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 5 | elin 3930 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
| 7 | elin 3930 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
| 9 | 8 | ineqri 4175 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 |
| This theorem is referenced by: in12 4192 in32 4193 in4 4197 indif2 4244 difun1 4262 dfrab3ss 4286 dfif4 4504 resres 5963 inres 5968 imainrect 6154 cnvrescnv 6168 predidm 6299 onfr 6371 fresaun 6731 fresaunres2 6732 fimacnvinrn2 7044 epfrs 9684 incexclem 15802 sadeq 16442 smuval2 16452 smumul 16463 ressinbas 17215 ressress 17217 resscatc 18071 sylow2a 19549 ablfac1eu 20005 ressmplbas2 21934 restco 23051 restopnb 23062 kgeni 23424 hausdiag 23532 fclsrest 23911 clsocv 25150 itg2cnlem2 25663 rplogsum 27438 chjassi 31415 pjoml2i 31514 cmcmlem 31520 cmbr3i 31529 fh1 31547 fh2 31548 pj3lem1 32135 dmdbr5 32237 mdslmd3i 32261 mdexchi 32264 atabsi 32330 dmdbr6ati 32352 prsss 33906 inelcarsg 34302 carsgclctunlem1 34308 msrid 35532 redundss3 38619 refrelsredund4 38623 osumcllem9N 39958 dihmeetbclemN 41298 dihmeetlem11N 41311 wfac8prim 44992 inabs3 45050 uzinico2 45559 caragenuncllem 46510 resinsn 48860 restclsseplem 48903 |
| Copyright terms: Public domain | W3C validator |