| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version | ||
| Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
| 2 | elin 3932 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 5 | elin 3932 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
| 7 | elin 3932 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
| 9 | 8 | ineqri 4177 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3923 |
| This theorem is referenced by: in12 4194 in32 4195 in4 4199 indif2 4246 difun1 4264 dfrab3ss 4288 dfif4 4506 resres 5965 inres 5970 imainrect 6156 cnvrescnv 6170 predidm 6301 onfr 6373 fresaun 6733 fresaunres2 6734 fimacnvinrn2 7046 epfrs 9690 incexclem 15808 sadeq 16448 smuval2 16458 smumul 16469 ressinbas 17221 ressress 17223 resscatc 18077 sylow2a 19555 ablfac1eu 20011 ressmplbas2 21940 restco 23057 restopnb 23068 kgeni 23430 hausdiag 23538 fclsrest 23917 clsocv 25156 itg2cnlem2 25669 rplogsum 27444 chjassi 31421 pjoml2i 31520 cmcmlem 31526 cmbr3i 31535 fh1 31553 fh2 31554 pj3lem1 32141 dmdbr5 32243 mdslmd3i 32267 mdexchi 32270 atabsi 32336 dmdbr6ati 32358 prsss 33912 inelcarsg 34308 carsgclctunlem1 34314 msrid 35532 redundss3 38614 refrelsredund4 38618 osumcllem9N 39953 dihmeetbclemN 41293 dihmeetlem11N 41306 wfac8prim 44985 inabs3 45043 uzinico2 45552 caragenuncllem 46503 resinsn 48850 restclsseplem 48893 |
| Copyright terms: Public domain | W3C validator |