MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4159
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 469 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3908 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 623 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 277 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3908 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3908 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4144 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1542  wcel 2110  cin 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899
This theorem is referenced by:  in12  4160  in32  4161  in4  4165  indif2  4210  difun1  4229  dfrab3ss  4252  dfif4  4480  resres  5903  inres  5908  imainrect  6083  cnvrescnv  6097  predidm  6228  onfr  6304  fresaun  6643  fresaunres2  6644  fimacnvinrn2  6947  epfrs  9489  incexclem  15546  sadeq  16177  smuval2  16187  smumul  16198  ressinbas  16953  ressress  16956  resscatc  17822  sylow2a  19222  ablfac1eu  19674  ressmplbas2  21226  restco  22313  restopnb  22324  kgeni  22686  hausdiag  22794  fclsrest  23173  clsocv  24412  itg2cnlem2  24925  rplogsum  26673  chjassi  29844  pjoml2i  29943  cmcmlem  29949  cmbr3i  29958  fh1  29976  fh2  29977  pj3lem1  30564  dmdbr5  30666  mdslmd3i  30690  mdexchi  30693  atabsi  30759  dmdbr6ati  30781  prsss  31862  inelcarsg  32274  carsgclctunlem1  32280  msrid  33503  redundss3  36737  refrelsredund4  36741  osumcllem9N  37974  dihmeetbclemN  39314  dihmeetlem11N  39327  inabs3  42574  uzinico2  43071  caragenuncllem  44021  restclsseplem  46177
  Copyright terms: Public domain W3C validator