MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4249
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3992 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 622 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 278 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3992 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 623 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3992 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4233 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983
This theorem is referenced by:  in12  4250  in32  4251  in4  4255  indif2  4300  difun1  4318  dfrab3ss  4342  dfif4  4563  resres  6022  inres  6027  imainrect  6212  cnvrescnv  6226  predidm  6358  onfr  6434  fresaun  6792  fresaunres2  6793  fimacnvinrn2  7106  epfrs  9800  incexclem  15884  sadeq  16518  smuval2  16528  smumul  16539  ressinbas  17304  ressress  17307  resscatc  18176  sylow2a  19661  ablfac1eu  20117  ressmplbas2  22068  restco  23193  restopnb  23204  kgeni  23566  hausdiag  23674  fclsrest  24053  clsocv  25303  itg2cnlem2  25817  rplogsum  27589  chjassi  31518  pjoml2i  31617  cmcmlem  31623  cmbr3i  31632  fh1  31650  fh2  31651  pj3lem1  32238  dmdbr5  32340  mdslmd3i  32364  mdexchi  32367  atabsi  32433  dmdbr6ati  32455  prsss  33862  inelcarsg  34276  carsgclctunlem1  34282  msrid  35513  redundss3  38584  refrelsredund4  38588  osumcllem9N  39921  dihmeetbclemN  41261  dihmeetlem11N  41274  inabs3  44958  uzinico2  45480  caragenuncllem  46433  restclsseplem  48594
  Copyright terms: Public domain W3C validator