MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4150
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3899 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 622 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 277 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3899 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 623 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3899 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 302 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4135 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890
This theorem is referenced by:  in12  4151  in32  4152  in4  4156  indif2  4201  difun1  4220  dfrab3ss  4243  dfif4  4471  resres  5893  inres  5898  imainrect  6073  cnvrescnv  6087  predidm  6218  onfr  6290  fresaun  6629  fresaunres2  6630  fimacnvinrn2  6932  epfrs  9420  incexclem  15476  sadeq  16107  smuval2  16117  smumul  16128  ressinbas  16881  ressress  16884  resscatc  17740  sylow2a  19139  ablfac1eu  19591  ressmplbas2  21138  restco  22223  restopnb  22234  kgeni  22596  hausdiag  22704  fclsrest  23083  clsocv  24319  itg2cnlem2  24832  rplogsum  26580  chjassi  29749  pjoml2i  29848  cmcmlem  29854  cmbr3i  29863  fh1  29881  fh2  29882  pj3lem1  30469  dmdbr5  30571  mdslmd3i  30595  mdexchi  30598  atabsi  30664  dmdbr6ati  30686  prsss  31768  inelcarsg  32178  carsgclctunlem1  32184  msrid  33407  redundss3  36668  refrelsredund4  36672  osumcllem9N  37905  dihmeetbclemN  39245  dihmeetlem11N  39258  inabs3  42493  uzinico2  42990  caragenuncllem  43940  restclsseplem  46096
  Copyright terms: Public domain W3C validator