MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4181
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3921 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 623 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 278 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3921 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3921 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4165 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cin 3904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-in 3912
This theorem is referenced by:  in12  4182  in32  4183  in4  4187  indif2  4234  difun1  4252  dfrab3ss  4276  dfif4  4494  resres  5947  inres  5952  imainrect  6134  cnvrescnv  6148  predidm  6278  onfr  6350  fresaun  6699  fresaunres2  6700  fimacnvinrn2  7010  epfrs  9646  incexclem  15761  sadeq  16401  smuval2  16411  smumul  16422  ressinbas  17174  ressress  17176  resscatc  18034  sylow2a  19516  ablfac1eu  19972  ressmplbas2  21950  restco  23067  restopnb  23078  kgeni  23440  hausdiag  23548  fclsrest  23927  clsocv  25166  itg2cnlem2  25679  rplogsum  27454  chjassi  31448  pjoml2i  31547  cmcmlem  31553  cmbr3i  31562  fh1  31580  fh2  31581  pj3lem1  32168  dmdbr5  32270  mdslmd3i  32294  mdexchi  32297  atabsi  32363  dmdbr6ati  32385  prsss  33882  inelcarsg  34278  carsgclctunlem1  34284  msrid  35517  redundss3  38604  refrelsredund4  38608  osumcllem9N  39943  dihmeetbclemN  41283  dihmeetlem11N  41296  wfac8prim  44976  inabs3  45034  uzinico2  45543  caragenuncllem  46494  resinsn  48844  restclsseplem  48887
  Copyright terms: Public domain W3C validator