MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4193
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3932 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 623 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 278 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3932 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3932 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4177 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cin 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3923
This theorem is referenced by:  in12  4194  in32  4195  in4  4199  indif2  4246  difun1  4264  dfrab3ss  4288  dfif4  4506  resres  5965  inres  5970  imainrect  6156  cnvrescnv  6170  predidm  6301  onfr  6373  fresaun  6733  fresaunres2  6734  fimacnvinrn2  7046  epfrs  9690  incexclem  15808  sadeq  16448  smuval2  16458  smumul  16469  ressinbas  17221  ressress  17223  resscatc  18077  sylow2a  19555  ablfac1eu  20011  ressmplbas2  21940  restco  23057  restopnb  23068  kgeni  23430  hausdiag  23538  fclsrest  23917  clsocv  25156  itg2cnlem2  25669  rplogsum  27444  chjassi  31421  pjoml2i  31520  cmcmlem  31526  cmbr3i  31535  fh1  31553  fh2  31554  pj3lem1  32141  dmdbr5  32243  mdslmd3i  32267  mdexchi  32270  atabsi  32336  dmdbr6ati  32358  prsss  33912  inelcarsg  34308  carsgclctunlem1  34314  msrid  35532  redundss3  38614  refrelsredund4  38618  osumcllem9N  39953  dihmeetbclemN  41293  dihmeetlem11N  41306  wfac8prim  44985  inabs3  45043  uzinico2  45552  caragenuncllem  46503  resinsn  48850  restclsseplem  48893
  Copyright terms: Public domain W3C validator