MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4153
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 469 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3903 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 623 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 277 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3903 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3903 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4138 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894
This theorem is referenced by:  in12  4154  in32  4155  in4  4159  indif2  4204  difun1  4223  dfrab3ss  4246  dfif4  4474  resres  5904  inres  5909  imainrect  6084  cnvrescnv  6098  predidm  6229  onfr  6305  fresaun  6645  fresaunres2  6646  fimacnvinrn2  6950  epfrs  9489  incexclem  15548  sadeq  16179  smuval2  16189  smumul  16200  ressinbas  16955  ressress  16958  resscatc  17824  sylow2a  19224  ablfac1eu  19676  ressmplbas2  21228  restco  22315  restopnb  22326  kgeni  22688  hausdiag  22796  fclsrest  23175  clsocv  24414  itg2cnlem2  24927  rplogsum  26675  chjassi  29848  pjoml2i  29947  cmcmlem  29953  cmbr3i  29962  fh1  29980  fh2  29981  pj3lem1  30568  dmdbr5  30670  mdslmd3i  30694  mdexchi  30697  atabsi  30763  dmdbr6ati  30785  prsss  31866  inelcarsg  32278  carsgclctunlem1  32284  msrid  33507  redundss3  36741  refrelsredund4  36745  osumcllem9N  37978  dihmeetbclemN  39318  dihmeetlem11N  39331  inabs3  42604  uzinico2  43100  caragenuncllem  44050  restclsseplem  46208
  Copyright terms: Public domain W3C validator