| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version | ||
| Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
| 2 | elin 3916 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 5 | elin 3916 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
| 7 | elin 3916 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
| 9 | 8 | ineqri 4160 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-in 3907 |
| This theorem is referenced by: in12 4177 in32 4178 in4 4182 indif2 4229 difun1 4247 dfrab3ss 4271 dfif4 4489 resres 5938 inres 5943 imainrect 6125 cnvrescnv 6139 predidm 6269 onfr 6341 fresaun 6690 fresaunres2 6691 fimacnvinrn2 7000 epfrs 9616 incexclem 15735 sadeq 16375 smuval2 16385 smumul 16396 ressinbas 17148 ressress 17150 resscatc 18008 sylow2a 19524 ablfac1eu 19980 ressmplbas2 21955 restco 23072 restopnb 23083 kgeni 23445 hausdiag 23553 fclsrest 23932 clsocv 25170 itg2cnlem2 25683 rplogsum 27458 chjassi 31456 pjoml2i 31555 cmcmlem 31561 cmbr3i 31570 fh1 31588 fh2 31589 pj3lem1 32176 dmdbr5 32278 mdslmd3i 32302 mdexchi 32305 atabsi 32371 dmdbr6ati 32393 prsss 33919 inelcarsg 34314 carsgclctunlem1 34320 msrid 35557 redundss3 38644 refrelsredund4 38648 osumcllem9N 39982 dihmeetbclemN 41322 dihmeetlem11N 41335 wfac8prim 45014 inabs3 45072 uzinico2 45580 caragenuncllem 46529 resinsn 48882 restclsseplem 48925 |
| Copyright terms: Public domain | W3C validator |