MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inass Structured version   Visualization version   GIF version

Theorem inass 4208
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
inass ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))

Proof of Theorem inass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 468 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
2 elin 3947 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32anbi2i 623 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
41, 3bitr4i 278 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
5 elin 3947 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶))
7 elin 3947 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
84, 6, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
98ineqri 4192 1 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-in 3938
This theorem is referenced by:  in12  4209  in32  4210  in4  4214  indif2  4261  difun1  4279  dfrab3ss  4303  dfif4  4521  resres  5984  inres  5989  imainrect  6175  cnvrescnv  6189  predidm  6320  onfr  6396  fresaun  6754  fresaunres2  6755  fimacnvinrn2  7067  epfrs  9750  incexclem  15857  sadeq  16496  smuval2  16506  smumul  16517  ressinbas  17271  ressress  17273  resscatc  18127  sylow2a  19605  ablfac1eu  20061  ressmplbas2  21990  restco  23107  restopnb  23118  kgeni  23480  hausdiag  23588  fclsrest  23967  clsocv  25207  itg2cnlem2  25720  rplogsum  27495  chjassi  31472  pjoml2i  31571  cmcmlem  31577  cmbr3i  31586  fh1  31604  fh2  31605  pj3lem1  32192  dmdbr5  32294  mdslmd3i  32318  mdexchi  32321  atabsi  32387  dmdbr6ati  32409  prsss  33952  inelcarsg  34348  carsgclctunlem1  34354  msrid  35572  redundss3  38651  refrelsredund4  38655  osumcllem9N  39988  dihmeetbclemN  41328  dihmeetlem11N  41341  wfac8prim  45002  inabs3  45060  uzinico2  45570  caragenuncllem  46521  resinsn  48827  restclsseplem  48869
  Copyright terms: Public domain W3C validator