Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inass | Structured version Visualization version GIF version |
Description: Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
inass | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 469 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 3903 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | 1, 3 | bitr4i 277 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
5 | elin 3903 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
7 | elin 3903 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
8 | 4, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∩ 𝐶))) |
9 | 8 | ineqri 4138 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 |
This theorem is referenced by: in12 4154 in32 4155 in4 4159 indif2 4204 difun1 4223 dfrab3ss 4246 dfif4 4474 resres 5904 inres 5909 imainrect 6084 cnvrescnv 6098 predidm 6229 onfr 6305 fresaun 6645 fresaunres2 6646 fimacnvinrn2 6950 epfrs 9489 incexclem 15548 sadeq 16179 smuval2 16189 smumul 16200 ressinbas 16955 ressress 16958 resscatc 17824 sylow2a 19224 ablfac1eu 19676 ressmplbas2 21228 restco 22315 restopnb 22326 kgeni 22688 hausdiag 22796 fclsrest 23175 clsocv 24414 itg2cnlem2 24927 rplogsum 26675 chjassi 29848 pjoml2i 29947 cmcmlem 29953 cmbr3i 29962 fh1 29980 fh2 29981 pj3lem1 30568 dmdbr5 30670 mdslmd3i 30694 mdexchi 30697 atabsi 30763 dmdbr6ati 30785 prsss 31866 inelcarsg 32278 carsgclctunlem1 32284 msrid 33507 redundss3 36741 refrelsredund4 36745 osumcllem9N 37978 dihmeetbclemN 39318 dihmeetlem11N 39331 inabs3 42604 uzinico2 43100 caragenuncllem 44050 restclsseplem 46208 |
Copyright terms: Public domain | W3C validator |