MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indm Structured version   Visualization version   GIF version

Theorem indm 4304
Description: De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
indm (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))

Proof of Theorem indm
StepHypRef Expression
1 difindi 4298 1 (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3478  cdif 3960  cun 3961  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970
This theorem is referenced by:  difdifdir  4498
  Copyright terms: Public domain W3C validator