MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indm Structured version   Visualization version   GIF version

Theorem indm 4298
Description: De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
indm (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))

Proof of Theorem indm
StepHypRef Expression
1 difindi 4292 1 (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3480  cdif 3948  cun 3949  cin 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958
This theorem is referenced by:  difdifdir  4492
  Copyright terms: Public domain W3C validator