MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indm Structured version   Visualization version   GIF version

Theorem indm 4222
Description: De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
indm (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))

Proof of Theorem indm
StepHypRef Expression
1 difindi 4215 1 (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cdif 3884  cun 3885  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894
This theorem is referenced by:  difdifdir  4422
  Copyright terms: Public domain W3C validator