| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indm | Structured version Visualization version GIF version | ||
| Description: De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| Ref | Expression |
|---|---|
| indm | ⊢ (V ∖ (𝐴 ∩ 𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difindi 4272 | 1 ⊢ (V ∖ (𝐴 ∩ 𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 |
| This theorem is referenced by: difdifdir 4472 |
| Copyright terms: Public domain | W3C validator |