| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun1 | Structured version Visualization version GIF version | ||
| Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
| Ref | Expression |
|---|---|
| difun1 | ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4203 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4254 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) | |
| 3 | 1, 2 | eqtr3i 2760 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) |
| 4 | undm 4272 | . . . . 5 ⊢ (V ∖ (𝐵 ∪ 𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶)) | |
| 5 | 4 | ineq2i 4192 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) |
| 6 | invdif 4254 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) | |
| 7 | 5, 6 | eqtr3i 2760 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
| 8 | 3, 7 | eqtr3i 2760 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
| 9 | invdif 4254 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 10 | 9 | difeq1i 4097 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
| 11 | 8, 10 | eqtr3i 2760 | 1 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 |
| This theorem is referenced by: dif32 4277 difabs 4278 difpr 4779 infdiffi 9672 mreexexlem4d 17659 nulmbl2 25489 unmbl 25490 caragenuncllem 46541 |
| Copyright terms: Public domain | W3C validator |