Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difun1 | Structured version Visualization version GIF version |
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difun1 | ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4153 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) | |
2 | invdif 4202 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) | |
3 | 1, 2 | eqtr3i 2768 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) |
4 | undm 4221 | . . . . 5 ⊢ (V ∖ (𝐵 ∪ 𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶)) | |
5 | 4 | ineq2i 4143 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) |
6 | invdif 4202 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) | |
7 | 5, 6 | eqtr3i 2768 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
8 | 3, 7 | eqtr3i 2768 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
9 | invdif 4202 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
10 | 9 | difeq1i 4053 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
11 | 8, 10 | eqtr3i 2768 | 1 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 |
This theorem is referenced by: dif32 4226 difabs 4227 difpr 4736 infdiffi 9416 mreexexlem4d 17356 nulmbl2 24700 unmbl 24701 caragenuncllem 44050 |
Copyright terms: Public domain | W3C validator |