Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difun1 | Structured version Visualization version GIF version |
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difun1 | ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4150 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) | |
2 | invdif 4199 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) | |
3 | 1, 2 | eqtr3i 2768 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) |
4 | undm 4218 | . . . . 5 ⊢ (V ∖ (𝐵 ∪ 𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶)) | |
5 | 4 | ineq2i 4140 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) |
6 | invdif 4199 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) | |
7 | 5, 6 | eqtr3i 2768 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
8 | 3, 7 | eqtr3i 2768 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
9 | invdif 4199 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
10 | 9 | difeq1i 4049 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
11 | 8, 10 | eqtr3i 2768 | 1 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 |
This theorem is referenced by: dif32 4223 difabs 4224 difpr 4733 infdiffi 9346 mreexexlem4d 17273 nulmbl2 24605 unmbl 24606 caragenuncllem 43940 |
Copyright terms: Public domain | W3C validator |