| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun1 | Structured version Visualization version GIF version | ||
| Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
| Ref | Expression |
|---|---|
| difun1 | ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4228 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4279 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) | |
| 3 | 1, 2 | eqtr3i 2767 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) |
| 4 | undm 4297 | . . . . 5 ⊢ (V ∖ (𝐵 ∪ 𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶)) | |
| 5 | 4 | ineq2i 4217 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) |
| 6 | invdif 4279 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) | |
| 7 | 5, 6 | eqtr3i 2767 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
| 8 | 3, 7 | eqtr3i 2767 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
| 9 | invdif 4279 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 10 | 9 | difeq1i 4122 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
| 11 | 8, 10 | eqtr3i 2767 | 1 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3480 ∖ cdif 3948 ∪ cun 3949 ∩ cin 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 |
| This theorem is referenced by: dif32 4302 difabs 4303 difpr 4803 infdiffi 9698 mreexexlem4d 17690 nulmbl2 25571 unmbl 25572 caragenuncllem 46527 |
| Copyright terms: Public domain | W3C validator |