| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undm | Structured version Visualization version GIF version | ||
| Description: De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| Ref | Expression |
|---|---|
| undm | ⊢ (V ∖ (𝐴 ∪ 𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundi 4253 | 1 ⊢ (V ∖ (𝐴 ∪ 𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 |
| This theorem is referenced by: difun1 4262 |
| Copyright terms: Public domain | W3C validator |