MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undm Structured version   Visualization version   GIF version

Theorem undm 4316
Description: De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
undm (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))

Proof of Theorem undm
StepHypRef Expression
1 difundi 4309 1 (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cdif 3973  cun 3974  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983
This theorem is referenced by:  difun1  4318
  Copyright terms: Public domain W3C validator