MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undm Structured version   Visualization version   GIF version

Theorem undm 4287
Description: De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
undm (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))

Proof of Theorem undm
StepHypRef Expression
1 difundi 4279 1 (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3473  cdif 3945  cun 3946  cin 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955
This theorem is referenced by:  difun1  4289
  Copyright terms: Public domain W3C validator