MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undm Structured version   Visualization version   GIF version

Theorem undm 4260
Description: De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
undm (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))

Proof of Theorem undm
StepHypRef Expression
1 difundi 4253 1 (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  cdif 3911  cun 3912  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921
This theorem is referenced by:  difun1  4262
  Copyright terms: Public domain W3C validator