MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindi Structured version   Visualization version   GIF version

Theorem difindi 4239
Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindi (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem difindi
StepHypRef Expression
1 dfin3 4224 . . 3 (𝐵𝐶) = (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))
21difeq2i 4070 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))))
3 indi 4231 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶)))
4 dfin2 4218 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))))
5 invdif 4226 . . . 4 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
6 invdif 4226 . . . 4 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
75, 6uneq12i 4113 . . 3 ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∪ (𝐴𝐶))
83, 4, 73eqtr3i 2762 . 2 (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) = ((𝐴𝐵) ∪ (𝐴𝐶))
92, 8eqtri 2754 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  cun 3895  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904
This theorem is referenced by:  difdif2  4243  indm  4245  fndifnfp  7110  dprddisj2  19953  fctop  22919  cctop  22921  mretopd  23007  restcld  23087  cfinfil  23808  csdfil  23809  indifundif  32504  difres  32580  unelcarsg  34325  clsk3nimkb  44132  ntrclskb  44161  ntrclsk3  44162  ntrclsk13  44163  salincl  46421  iscnrm3rlem1  49039
  Copyright terms: Public domain W3C validator