| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difindi | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difindi | ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin3 4224 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) | |
| 2 | 1 | difeq2i 4070 | . 2 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) |
| 3 | indi 4231 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) | |
| 4 | dfin2 4218 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) | |
| 5 | invdif 4226 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 6 | invdif 4226 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 7 | 5, 6 | uneq12i 4113 | . . 3 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| 8 | 3, 4, 7 | 3eqtr3i 2762 | . 2 ⊢ (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| 9 | 2, 8 | eqtri 2754 | 1 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 |
| This theorem is referenced by: difdif2 4243 indm 4245 fndifnfp 7110 dprddisj2 19953 fctop 22919 cctop 22921 mretopd 23007 restcld 23087 cfinfil 23808 csdfil 23809 indifundif 32504 difres 32580 unelcarsg 34325 clsk3nimkb 44132 ntrclskb 44161 ntrclsk3 44162 ntrclsk13 44163 salincl 46421 iscnrm3rlem1 49039 |
| Copyright terms: Public domain | W3C validator |