MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindi Structured version   Visualization version   GIF version

Theorem difindi 4258
Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindi (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem difindi
StepHypRef Expression
1 dfin3 4243 . . 3 (𝐵𝐶) = (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))
21difeq2i 4096 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))))
3 indi 4250 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶)))
4 dfin2 4237 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))))
5 invdif 4245 . . . 4 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
6 invdif 4245 . . . 4 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
75, 6uneq12i 4137 . . 3 ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∪ (𝐴𝐶))
83, 4, 73eqtr3i 2852 . 2 (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) = ((𝐴𝐵) ∪ (𝐴𝐶))
92, 8eqtri 2844 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3495  cdif 3933  cun 3934  cin 3935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943
This theorem is referenced by:  difdif2  4261  indm  4263  fndifnfp  6933  dprddisj2  19155  fctop  21606  cctop  21608  mretopd  21694  restcld  21774  cfinfil  22495  csdfil  22496  indifundif  30279  difres  30344  unelcarsg  31565  clsk3nimkb  40383  ntrclskb  40412  ntrclsk3  40413  ntrclsk13  40414  salincl  42601
  Copyright terms: Public domain W3C validator