| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difindi | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difindi | ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin3 4236 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) | |
| 2 | 1 | difeq2i 4082 | . 2 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) |
| 3 | indi 4243 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) | |
| 4 | dfin2 4230 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) | |
| 5 | invdif 4238 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 6 | invdif 4238 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 7 | 5, 6 | uneq12i 4125 | . . 3 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| 8 | 3, 4, 7 | 3eqtr3i 2760 | . 2 ⊢ (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| 9 | 2, 8 | eqtri 2752 | 1 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 |
| This theorem is referenced by: difdif2 4255 indm 4257 fndifnfp 7132 dprddisj2 19955 fctop 22924 cctop 22926 mretopd 23012 restcld 23092 cfinfil 23813 csdfil 23814 indifundif 32503 difres 32579 unelcarsg 34296 clsk3nimkb 44022 ntrclskb 44051 ntrclsk3 44052 ntrclsk13 44053 salincl 46315 iscnrm3rlem1 48921 |
| Copyright terms: Public domain | W3C validator |