| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difindi | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difindi | ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin3 4252 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) | |
| 2 | 1 | difeq2i 4098 | . 2 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) |
| 3 | indi 4259 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) | |
| 4 | dfin2 4246 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) | |
| 5 | invdif 4254 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 6 | invdif 4254 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 7 | 5, 6 | uneq12i 4141 | . . 3 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| 8 | 3, 4, 7 | 3eqtr3i 2766 | . 2 ⊢ (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| 9 | 2, 8 | eqtri 2758 | 1 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 |
| This theorem is referenced by: difdif2 4271 indm 4273 fndifnfp 7168 dprddisj2 20022 fctop 22942 cctop 22944 mretopd 23030 restcld 23110 cfinfil 23831 csdfil 23832 indifundif 32505 difres 32581 unelcarsg 34344 clsk3nimkb 44064 ntrclskb 44093 ntrclsk3 44094 ntrclsk13 44095 salincl 46353 iscnrm3rlem1 48914 |
| Copyright terms: Public domain | W3C validator |