![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difindi | Structured version Visualization version GIF version |
Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difindi | ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin3 4267 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) | |
2 | 1 | difeq2i 4120 | . 2 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) |
3 | indi 4274 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) | |
4 | dfin2 4261 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∪ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) | |
5 | invdif 4269 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
6 | invdif 4269 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
7 | 5, 6 | uneq12i 4162 | . . 3 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
8 | 3, 4, 7 | 3eqtr3i 2769 | . 2 ⊢ (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∪ (V ∖ 𝐶)))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
9 | 2, 8 | eqtri 2761 | 1 ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3475 ∖ cdif 3946 ∪ cun 3947 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 |
This theorem is referenced by: difdif2 4287 indm 4289 fndifnfp 7174 dprddisj2 19909 fctop 22507 cctop 22509 mretopd 22596 restcld 22676 cfinfil 23397 csdfil 23398 indifundif 31793 difres 31862 unelcarsg 33342 clsk3nimkb 42839 ntrclskb 42868 ntrclsk3 42869 ntrclsk13 42870 salincl 45088 iscnrm3rlem1 47621 |
Copyright terms: Public domain | W3C validator |