Proof of Theorem difdifdir
Step | Hyp | Ref
| Expression |
1 | | dif32 4223 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
2 | | invdif 4199 |
. . . . 5
⊢ ((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
3 | 1, 2 | eqtr4i 2769 |
. . . 4
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) |
4 | | un0 4321 |
. . . 4
⊢ (((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) ∪ ∅) = ((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) |
5 | 3, 4 | eqtr4i 2769 |
. . 3
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = (((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) ∪ ∅) |
6 | | indi 4204 |
. . . 4
⊢ ((𝐴 ∖ 𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) = (((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) ∪ ((𝐴 ∖ 𝐶) ∩ 𝐶)) |
7 | | disjdif 4402 |
. . . . . 6
⊢ (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅ |
8 | | incom 4131 |
. . . . . 6
⊢ (𝐶 ∩ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) ∩ 𝐶) |
9 | 7, 8 | eqtr3i 2768 |
. . . . 5
⊢ ∅ =
((𝐴 ∖ 𝐶) ∩ 𝐶) |
10 | 9 | uneq2i 4090 |
. . . 4
⊢ (((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) ∪ ∅) = (((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) ∪ ((𝐴 ∖ 𝐶) ∩ 𝐶)) |
11 | 6, 10 | eqtr4i 2769 |
. . 3
⊢ ((𝐴 ∖ 𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) = (((𝐴 ∖ 𝐶) ∩ (V ∖ 𝐵)) ∪ ∅) |
12 | 5, 11 | eqtr4i 2769 |
. 2
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) |
13 | | ddif 4067 |
. . . . 5
⊢ (V
∖ (V ∖ 𝐶)) =
𝐶 |
14 | 13 | uneq2i 4090 |
. . . 4
⊢ ((V
∖ 𝐵) ∪ (V ∖
(V ∖ 𝐶))) = ((V
∖ 𝐵) ∪ 𝐶) |
15 | | indm 4219 |
. . . . 5
⊢ (V
∖ (𝐵 ∩ (V ∖
𝐶))) = ((V ∖ 𝐵) ∪ (V ∖ (V ∖
𝐶))) |
16 | | invdif 4199 |
. . . . . 6
⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) |
17 | 16 | difeq2i 4050 |
. . . . 5
⊢ (V
∖ (𝐵 ∩ (V ∖
𝐶))) = (V ∖ (𝐵 ∖ 𝐶)) |
18 | 15, 17 | eqtr3i 2768 |
. . . 4
⊢ ((V
∖ 𝐵) ∪ (V ∖
(V ∖ 𝐶))) = (V
∖ (𝐵 ∖ 𝐶)) |
19 | 14, 18 | eqtr3i 2768 |
. . 3
⊢ ((V
∖ 𝐵) ∪ 𝐶) = (V ∖ (𝐵 ∖ 𝐶)) |
20 | 19 | ineq2i 4140 |
. 2
⊢ ((𝐴 ∖ 𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) = ((𝐴 ∖ 𝐶) ∩ (V ∖ (𝐵 ∖ 𝐶))) |
21 | | invdif 4199 |
. 2
⊢ ((𝐴 ∖ 𝐶) ∩ (V ∖ (𝐵 ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∖ (𝐵 ∖ 𝐶)) |
22 | 12, 20, 21 | 3eqtri 2770 |
1
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ (𝐵 ∖ 𝐶)) |