MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineq1OLD Structured version   Visualization version   GIF version

Theorem ineq1OLD 4135
Description: Obsolete version of ineq1 4134 as of 20-Sep-2023. Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ineq1OLD (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem ineq1OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2881 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 632 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
3 elin 3900 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elin 3900 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43bitr4g 317 . 2 (𝐴 = 𝐵 → (𝑥 ∈ (𝐴𝐶) ↔ 𝑥 ∈ (𝐵𝐶)))
65eqrdv 2799 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  cin 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-in 3891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator