| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| Ref | Expression |
|---|---|
| ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3417 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
| 2 | dfin5 3919 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
| 3 | dfin5 3919 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 |
| This theorem is referenced by: ineq2 4173 ineq12 4174 ineq1i 4175 ineq1d 4178 unineq 4247 dfrab3ss 4282 disjeq0 4415 inex1g 5269 reseq1 5933 sspred 6271 isofrlem 7297 qsdisj 8744 fiint 9253 fiintOLD 9254 elfiun 9357 dffi3 9358 inf3lema 9553 dfac5lem5 10056 kmlem12 10091 kmlem14 10093 fin23lem24 10251 fin23lem26 10254 fin23lem23 10255 fin23lem22 10256 fin23lem27 10257 ingru 10744 uzin2 15287 incexclem 15778 elrestr 17367 firest 17371 rngcval 20538 ringcval 20567 inopn 22819 isbasisg 22867 basis1 22870 basis2 22871 tgval 22875 fctop 22924 cctop 22926 ntrfval 22944 elcls 22993 clsndisj 22995 elcls3 23003 neindisj2 23043 tgrest 23079 restco 23084 restsn 23090 restcld 23092 restcldi 23093 restopnb 23095 neitr 23100 restcls 23101 ordtbaslem 23108 ordtrest2lem 23123 hausnei2 23273 cnhaus 23274 regsep2 23296 dishaus 23302 ordthauslem 23303 cmpsublem 23319 cmpsub 23320 nconnsubb 23343 connsubclo 23344 1stcelcls 23381 islly 23388 cldllycmp 23415 lly1stc 23416 locfincmp 23446 elkgen 23456 ptclsg 23535 dfac14lem 23537 txrest 23551 pthaus 23558 txhaus 23567 xkohaus 23573 xkoptsub 23574 regr1lem 23659 isfbas 23749 fbasssin 23756 fbun 23760 isfil 23767 fbunfip 23789 fgval 23790 filconn 23803 uzrest 23817 isufil2 23828 hauspwpwf1 23907 fclsopni 23935 fclsnei 23939 fclsrest 23944 fcfnei 23955 fcfneii 23957 tsmsfbas 24048 ustincl 24128 ustdiag 24129 ustinvel 24130 ustexhalf 24131 ust0 24140 trust 24150 restutopopn 24159 lpbl 24424 methaus 24441 metrest 24445 restmetu 24491 qtopbaslem 24679 qdensere 24690 xrtgioo 24728 metnrmlem3 24783 icoopnst 24869 iocopnst 24870 ovolicc2lem2 25452 ovolicc2lem5 25455 mblsplit 25466 limcnlp 25812 ellimc3 25813 limcflf 25815 limciun 25828 ig1pval 26114 shincl 31360 shmodi 31369 omlsi 31383 pjoml 31415 chm0 31470 chincl 31478 chdmm1 31504 ledi 31519 cmbr 31563 cmbr3 31587 mdbr 32273 dmdmd 32279 dmdi 32281 dmdbr3 32284 dmdbr4 32285 mdslmd1lem4 32307 cvmd 32315 cvexch 32353 dmdbr6ati 32402 mddmdin0i 32410 difeq 32497 ofpreima2 32640 ssdifidlprm 33422 ufdprmidl 33505 1arithufdlem4 33511 rspectopn 33850 ordtrest2NEWlem 33905 inelsros 34161 diffiunisros 34162 measvuni 34197 measinb 34204 inelcarsg 34295 carsgclctunlem2 34303 totprob 34411 ballotlemgval 34508 cvmscbv 35238 cvmsdisj 35250 cvmsss2 35254 satfv1 35343 nepss 35698 brapply 35919 opnbnd 36306 isfne 36320 tailfb 36358 bj-restsn 37063 bj-restpw 37073 bj-rest0 37074 bj-restb 37075 nlpfvineqsn 37390 fvineqsnf1 37391 pibt2 37398 ptrest 37606 poimirlem30 37637 mblfinlem2 37645 bndss 37773 qsdisjALTV 38599 redundss3 38612 lcvexchlem4 39023 fipjust 43547 ntrkbimka 44020 ntrk0kbimka 44021 clsk3nimkb 44022 isotone2 44031 ntrclskb 44051 ntrclsk3 44052 ntrclsk13 44053 ismnushort 44283 relpfrlem 44936 permac8prim 44997 elrestd 45095 restsubel 45140 islptre 45610 islpcn 45630 subsaliuncllem 46348 subsaliuncl 46349 nnfoctbdjlem 46446 caragensplit 46491 vonvolmbllem 46651 vonvolmbl 46652 incsmflem 46732 decsmflem 46757 smflimlem2 46763 smflimlem3 46764 smflim 46768 smfpimcclem 46798 uzlidlring 48216 rngcvalALTV 48246 ringcvalALTV 48270 sepfsepc 48909 iscnrm3rlem2 48922 iscnrm3rlem8 48928 iscnrm3llem2 48931 |
| Copyright terms: Public domain | W3C validator |