| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| Ref | Expression |
|---|---|
| ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3409 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
| 2 | dfin5 3911 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
| 3 | dfin5 3911 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-in 3910 |
| This theorem is referenced by: ineq2 4165 ineq12 4166 ineq1i 4167 ineq1d 4170 unineq 4239 dfrab3ss 4274 disjeq0 4407 inex1g 5258 reseq1 5924 sspred 6258 isofrlem 7277 qsdisj 8721 fiint 9216 fiintOLD 9217 elfiun 9320 dffi3 9321 inf3lema 9520 dfac5lem5 10021 kmlem12 10056 kmlem14 10058 fin23lem24 10216 fin23lem26 10219 fin23lem23 10220 fin23lem22 10221 fin23lem27 10222 ingru 10709 uzin2 15252 incexclem 15743 elrestr 17332 firest 17336 rngcval 20503 ringcval 20532 inopn 22784 isbasisg 22832 basis1 22835 basis2 22836 tgval 22840 fctop 22889 cctop 22891 ntrfval 22909 elcls 22958 clsndisj 22960 elcls3 22968 neindisj2 23008 tgrest 23044 restco 23049 restsn 23055 restcld 23057 restcldi 23058 restopnb 23060 neitr 23065 restcls 23066 ordtbaslem 23073 ordtrest2lem 23088 hausnei2 23238 cnhaus 23239 regsep2 23261 dishaus 23267 ordthauslem 23268 cmpsublem 23284 cmpsub 23285 nconnsubb 23308 connsubclo 23309 1stcelcls 23346 islly 23353 cldllycmp 23380 lly1stc 23381 locfincmp 23411 elkgen 23421 ptclsg 23500 dfac14lem 23502 txrest 23516 pthaus 23523 txhaus 23532 xkohaus 23538 xkoptsub 23539 regr1lem 23624 isfbas 23714 fbasssin 23721 fbun 23725 isfil 23732 fbunfip 23754 fgval 23755 filconn 23768 uzrest 23782 isufil2 23793 hauspwpwf1 23872 fclsopni 23900 fclsnei 23904 fclsrest 23909 fcfnei 23920 fcfneii 23922 tsmsfbas 24013 ustincl 24093 ustdiag 24094 ustinvel 24095 ustexhalf 24096 ust0 24105 trust 24115 restutopopn 24124 lpbl 24389 methaus 24406 metrest 24410 restmetu 24456 qtopbaslem 24644 qdensere 24655 xrtgioo 24693 metnrmlem3 24748 icoopnst 24834 iocopnst 24835 ovolicc2lem2 25417 ovolicc2lem5 25420 mblsplit 25431 limcnlp 25777 ellimc3 25778 limcflf 25780 limciun 25793 ig1pval 26079 shincl 31325 shmodi 31334 omlsi 31348 pjoml 31380 chm0 31435 chincl 31443 chdmm1 31469 ledi 31484 cmbr 31528 cmbr3 31552 mdbr 32238 dmdmd 32244 dmdi 32246 dmdbr3 32249 dmdbr4 32250 mdslmd1lem4 32272 cvmd 32280 cvexch 32318 dmdbr6ati 32367 mddmdin0i 32375 difeq 32462 ofpreima2 32609 ssdifidlprm 33395 ufdprmidl 33478 1arithufdlem4 33484 rspectopn 33834 ordtrest2NEWlem 33889 inelsros 34145 diffiunisros 34146 measvuni 34181 measinb 34188 inelcarsg 34279 carsgclctunlem2 34287 totprob 34395 ballotlemgval 34492 cvmscbv 35231 cvmsdisj 35243 cvmsss2 35247 satfv1 35336 nepss 35691 brapply 35912 opnbnd 36299 isfne 36313 tailfb 36351 bj-restsn 37056 bj-restpw 37066 bj-rest0 37067 bj-restb 37068 nlpfvineqsn 37383 fvineqsnf1 37384 pibt2 37391 ptrest 37599 poimirlem30 37630 mblfinlem2 37638 bndss 37766 qsdisjALTV 38592 redundss3 38605 lcvexchlem4 39016 fipjust 43538 ntrkbimka 44011 ntrk0kbimka 44012 clsk3nimkb 44013 isotone2 44022 ntrclskb 44042 ntrclsk3 44043 ntrclsk13 44044 ismnushort 44274 relpfrlem 44927 permac8prim 44988 elrestd 45086 restsubel 45131 islptre 45600 islpcn 45620 subsaliuncllem 46338 subsaliuncl 46339 nnfoctbdjlem 46436 caragensplit 46481 vonvolmbllem 46641 vonvolmbl 46642 incsmflem 46722 decsmflem 46747 smflimlem2 46753 smflimlem3 46754 smflim 46758 smfpimcclem 46788 uzlidlring 48219 rngcvalALTV 48249 ringcvalALTV 48273 sepfsepc 48912 iscnrm3rlem2 48925 iscnrm3rlem8 48931 iscnrm3llem2 48934 |
| Copyright terms: Public domain | W3C validator |