| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| Ref | Expression |
|---|---|
| ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3417 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
| 2 | dfin5 3919 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
| 3 | dfin5 3919 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 |
| This theorem is referenced by: ineq2 4173 ineq12 4174 ineq1i 4175 ineq1d 4178 unineq 4247 dfrab3ss 4282 disjeq0 4415 inex1g 5269 reseq1 5933 sspred 6271 isofrlem 7297 qsdisj 8744 fiint 9253 fiintOLD 9254 elfiun 9357 dffi3 9358 inf3lema 9553 dfac5lem5 10056 kmlem12 10091 kmlem14 10093 fin23lem24 10251 fin23lem26 10254 fin23lem23 10255 fin23lem22 10256 fin23lem27 10257 ingru 10744 uzin2 15287 incexclem 15778 elrestr 17367 firest 17371 rngcval 20503 ringcval 20532 inopn 22762 isbasisg 22810 basis1 22813 basis2 22814 tgval 22818 fctop 22867 cctop 22869 ntrfval 22887 elcls 22936 clsndisj 22938 elcls3 22946 neindisj2 22986 tgrest 23022 restco 23027 restsn 23033 restcld 23035 restcldi 23036 restopnb 23038 neitr 23043 restcls 23044 ordtbaslem 23051 ordtrest2lem 23066 hausnei2 23216 cnhaus 23217 regsep2 23239 dishaus 23245 ordthauslem 23246 cmpsublem 23262 cmpsub 23263 nconnsubb 23286 connsubclo 23287 1stcelcls 23324 islly 23331 cldllycmp 23358 lly1stc 23359 locfincmp 23389 elkgen 23399 ptclsg 23478 dfac14lem 23480 txrest 23494 pthaus 23501 txhaus 23510 xkohaus 23516 xkoptsub 23517 regr1lem 23602 isfbas 23692 fbasssin 23699 fbun 23703 isfil 23710 fbunfip 23732 fgval 23733 filconn 23746 uzrest 23760 isufil2 23771 hauspwpwf1 23850 fclsopni 23878 fclsnei 23882 fclsrest 23887 fcfnei 23898 fcfneii 23900 tsmsfbas 23991 ustincl 24071 ustdiag 24072 ustinvel 24073 ustexhalf 24074 ust0 24083 trust 24093 restutopopn 24102 lpbl 24367 methaus 24384 metrest 24388 restmetu 24434 qtopbaslem 24622 qdensere 24633 xrtgioo 24671 metnrmlem3 24726 icoopnst 24812 iocopnst 24813 ovolicc2lem2 25395 ovolicc2lem5 25398 mblsplit 25409 limcnlp 25755 ellimc3 25756 limcflf 25758 limciun 25771 ig1pval 26057 shincl 31283 shmodi 31292 omlsi 31306 pjoml 31338 chm0 31393 chincl 31401 chdmm1 31427 ledi 31442 cmbr 31486 cmbr3 31510 mdbr 32196 dmdmd 32202 dmdi 32204 dmdbr3 32207 dmdbr4 32208 mdslmd1lem4 32230 cvmd 32238 cvexch 32276 dmdbr6ati 32325 mddmdin0i 32333 difeq 32420 ofpreima2 32563 ssdifidlprm 33402 ufdprmidl 33485 1arithufdlem4 33491 rspectopn 33830 ordtrest2NEWlem 33885 inelsros 34141 diffiunisros 34142 measvuni 34177 measinb 34184 inelcarsg 34275 carsgclctunlem2 34283 totprob 34391 ballotlemgval 34488 cvmscbv 35218 cvmsdisj 35230 cvmsss2 35234 satfv1 35323 nepss 35678 brapply 35899 opnbnd 36286 isfne 36300 tailfb 36338 bj-restsn 37043 bj-restpw 37053 bj-rest0 37054 bj-restb 37055 nlpfvineqsn 37370 fvineqsnf1 37371 pibt2 37378 ptrest 37586 poimirlem30 37617 mblfinlem2 37625 bndss 37753 qsdisjALTV 38579 redundss3 38592 lcvexchlem4 39003 fipjust 43527 ntrkbimka 44000 ntrk0kbimka 44001 clsk3nimkb 44002 isotone2 44011 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 ismnushort 44263 relpfrlem 44916 permac8prim 44977 elrestd 45075 restsubel 45120 islptre 45590 islpcn 45610 subsaliuncllem 46328 subsaliuncl 46329 nnfoctbdjlem 46426 caragensplit 46471 vonvolmbllem 46631 vonvolmbl 46632 incsmflem 46712 decsmflem 46737 smflimlem2 46743 smflimlem3 46744 smflim 46748 smfpimcclem 46778 uzlidlring 48196 rngcvalALTV 48226 ringcvalALTV 48250 sepfsepc 48889 iscnrm3rlem2 48902 iscnrm3rlem8 48908 iscnrm3llem2 48911 |
| Copyright terms: Public domain | W3C validator |