![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3446 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
2 | dfin5 3955 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
3 | dfin5 3955 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2797 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-in 3954 |
This theorem is referenced by: ineq2 4205 ineq12 4206 ineq1i 4207 ineq1d 4210 unineq 4276 dfrab3ss 4311 disjeq0 4454 intprgOLD 4987 inex1g 5318 reseq1 5973 sspred 6306 isofrlem 7333 qsdisj 8784 fiint 9320 elfiun 9421 dffi3 9422 inf3lema 9615 dfac5lem5 10118 kmlem12 10152 kmlem14 10154 fin23lem24 10313 fin23lem26 10316 fin23lem23 10317 fin23lem22 10318 fin23lem27 10319 ingru 10806 uzin2 15287 incexclem 15778 elrestr 17370 firest 17374 inopn 22392 isbasisg 22441 basis1 22444 basis2 22445 tgval 22449 fctop 22498 cctop 22500 ntrfval 22519 elcls 22568 clsndisj 22570 elcls3 22578 neindisj2 22618 tgrest 22654 restco 22659 restsn 22665 restcld 22667 restcldi 22668 restopnb 22670 neitr 22675 restcls 22676 ordtbaslem 22683 ordtrest2lem 22698 hausnei2 22848 cnhaus 22849 regsep2 22871 dishaus 22877 ordthauslem 22878 cmpsublem 22894 cmpsub 22895 nconnsubb 22918 connsubclo 22919 1stcelcls 22956 islly 22963 cldllycmp 22990 lly1stc 22991 locfincmp 23021 elkgen 23031 ptclsg 23110 dfac14lem 23112 txrest 23126 pthaus 23133 txhaus 23142 xkohaus 23148 xkoptsub 23149 regr1lem 23234 isfbas 23324 fbasssin 23331 fbun 23335 isfil 23342 fbunfip 23364 fgval 23365 filconn 23378 uzrest 23392 isufil2 23403 hauspwpwf1 23482 fclsopni 23510 fclsnei 23514 fclsrest 23519 fcfnei 23530 fcfneii 23532 tsmsfbas 23623 ustincl 23703 ustdiag 23704 ustinvel 23705 ustexhalf 23706 ust0 23715 trust 23725 restutopopn 23734 lpbl 24003 methaus 24020 metrest 24024 restmetu 24070 qtopbaslem 24266 qdensere 24277 xrtgioo 24313 metnrmlem3 24368 icoopnst 24446 iocopnst 24447 ovolicc2lem2 25026 ovolicc2lem5 25029 mblsplit 25040 limcnlp 25386 ellimc3 25387 limcflf 25389 limciun 25402 ig1pval 25681 shincl 30621 shmodi 30630 omlsi 30644 pjoml 30676 chm0 30731 chincl 30739 chdmm1 30765 ledi 30780 cmbr 30824 cmbr3 30848 mdbr 31534 dmdmd 31540 dmdi 31542 dmdbr3 31545 dmdbr4 31546 mdslmd1lem4 31568 cvmd 31576 cvexch 31614 dmdbr6ati 31663 mddmdin0i 31671 difeq 31743 ofpreima2 31878 rspectopn 32835 ordtrest2NEWlem 32890 inelsros 33164 diffiunisros 33165 measvuni 33200 measinb 33207 inelcarsg 33298 carsgclctunlem2 33306 totprob 33414 ballotlemgval 33510 cvmscbv 34237 cvmsdisj 34249 cvmsss2 34253 satfv1 34342 nepss 34675 brapply 34898 opnbnd 35198 isfne 35212 tailfb 35250 bj-restsn 35951 bj-restpw 35961 bj-rest0 35962 bj-restb 35963 nlpfvineqsn 36278 fvineqsnf1 36279 pibt2 36286 ptrest 36475 poimirlem30 36506 mblfinlem2 36514 bndss 36642 qsdisjALTV 37473 redundss3 37486 lcvexchlem4 37895 fipjust 42301 ntrkbimka 42774 ntrk0kbimka 42775 clsk3nimkb 42776 isotone2 42785 ntrclskb 42805 ntrclsk3 42806 ntrclsk13 42807 ismnushort 43045 elrestd 43782 restsubel 43832 islptre 44321 islpcn 44341 subsaliuncllem 45059 subsaliuncl 45060 nnfoctbdjlem 45157 caragensplit 45202 vonvolmbllem 45362 vonvolmbl 45363 incsmflem 45443 decsmflem 45468 smflimlem2 45474 smflimlem3 45475 smflim 45479 smfpimcclem 45509 uzlidlring 46780 rngcvalALTV 46812 rngcval 46813 ringcvalALTV 46858 ringcval 46859 sepfsepc 47513 iscnrm3rlem2 47527 iscnrm3rlem8 47533 iscnrm3llem2 47536 |
Copyright terms: Public domain | W3C validator |