![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3447 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
2 | dfin5 3970 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
3 | dfin5 3970 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 {crab 3432 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-in 3969 |
This theorem is referenced by: ineq2 4221 ineq12 4222 ineq1i 4223 ineq1d 4226 unineq 4293 dfrab3ss 4328 disjeq0 4461 inex1g 5324 reseq1 5993 sspred 6331 isofrlem 7359 qsdisj 8832 fiint 9363 fiintOLD 9364 elfiun 9467 dffi3 9468 inf3lema 9661 dfac5lem5 10164 kmlem12 10199 kmlem14 10201 fin23lem24 10359 fin23lem26 10362 fin23lem23 10363 fin23lem22 10364 fin23lem27 10365 ingru 10852 uzin2 15379 incexclem 15868 elrestr 17474 firest 17478 rngcval 20634 ringcval 20663 inopn 22920 isbasisg 22969 basis1 22972 basis2 22973 tgval 22977 fctop 23026 cctop 23028 ntrfval 23047 elcls 23096 clsndisj 23098 elcls3 23106 neindisj2 23146 tgrest 23182 restco 23187 restsn 23193 restcld 23195 restcldi 23196 restopnb 23198 neitr 23203 restcls 23204 ordtbaslem 23211 ordtrest2lem 23226 hausnei2 23376 cnhaus 23377 regsep2 23399 dishaus 23405 ordthauslem 23406 cmpsublem 23422 cmpsub 23423 nconnsubb 23446 connsubclo 23447 1stcelcls 23484 islly 23491 cldllycmp 23518 lly1stc 23519 locfincmp 23549 elkgen 23559 ptclsg 23638 dfac14lem 23640 txrest 23654 pthaus 23661 txhaus 23670 xkohaus 23676 xkoptsub 23677 regr1lem 23762 isfbas 23852 fbasssin 23859 fbun 23863 isfil 23870 fbunfip 23892 fgval 23893 filconn 23906 uzrest 23920 isufil2 23931 hauspwpwf1 24010 fclsopni 24038 fclsnei 24042 fclsrest 24047 fcfnei 24058 fcfneii 24060 tsmsfbas 24151 ustincl 24231 ustdiag 24232 ustinvel 24233 ustexhalf 24234 ust0 24243 trust 24253 restutopopn 24262 lpbl 24531 methaus 24548 metrest 24552 restmetu 24598 qtopbaslem 24794 qdensere 24805 xrtgioo 24841 metnrmlem3 24896 icoopnst 24982 iocopnst 24983 ovolicc2lem2 25566 ovolicc2lem5 25569 mblsplit 25580 limcnlp 25927 ellimc3 25928 limcflf 25930 limciun 25943 ig1pval 26229 shincl 31409 shmodi 31418 omlsi 31432 pjoml 31464 chm0 31519 chincl 31527 chdmm1 31553 ledi 31568 cmbr 31612 cmbr3 31636 mdbr 32322 dmdmd 32328 dmdi 32330 dmdbr3 32333 dmdbr4 32334 mdslmd1lem4 32356 cvmd 32364 cvexch 32402 dmdbr6ati 32451 mddmdin0i 32459 difeq 32545 ofpreima2 32682 ssdifidlprm 33465 ufdprmidl 33548 1arithufdlem4 33554 rspectopn 33827 ordtrest2NEWlem 33882 inelsros 34158 diffiunisros 34159 measvuni 34194 measinb 34201 inelcarsg 34292 carsgclctunlem2 34300 totprob 34408 ballotlemgval 34504 cvmscbv 35242 cvmsdisj 35254 cvmsss2 35258 satfv1 35347 nepss 35697 brapply 35919 opnbnd 36307 isfne 36321 tailfb 36359 bj-restsn 37064 bj-restpw 37074 bj-rest0 37075 bj-restb 37076 nlpfvineqsn 37391 fvineqsnf1 37392 pibt2 37399 ptrest 37605 poimirlem30 37636 mblfinlem2 37644 bndss 37772 qsdisjALTV 38596 redundss3 38609 lcvexchlem4 39018 fipjust 43554 ntrkbimka 44027 ntrk0kbimka 44028 clsk3nimkb 44029 isotone2 44038 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 ismnushort 44296 elrestd 45047 restsubel 45095 islptre 45574 islpcn 45594 subsaliuncllem 46312 subsaliuncl 46313 nnfoctbdjlem 46410 caragensplit 46455 vonvolmbllem 46615 vonvolmbl 46616 incsmflem 46696 decsmflem 46721 smflimlem2 46727 smflimlem3 46728 smflim 46732 smfpimcclem 46762 uzlidlring 48078 rngcvalALTV 48108 ringcvalALTV 48132 sepfsepc 48723 iscnrm3rlem2 48737 iscnrm3rlem8 48743 iscnrm3llem2 48746 |
Copyright terms: Public domain | W3C validator |