Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3408 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
2 | dfin5 3891 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
3 | dfin5 3891 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 |
This theorem is referenced by: ineq2 4137 ineq12 4138 ineq1i 4139 ineq1d 4142 unineq 4208 dfrab3ss 4243 disjeq0 4386 intprgOLD 4912 inex1g 5238 reseq1 5874 sspred 6200 isofrlem 7191 qsdisj 8541 fiint 9021 elfiun 9119 dffi3 9120 inf3lema 9312 dfac5lem5 9814 kmlem12 9848 kmlem14 9850 fin23lem24 10009 fin23lem26 10012 fin23lem23 10013 fin23lem22 10014 fin23lem27 10015 ingru 10502 uzin2 14984 incexclem 15476 elrestr 17056 firest 17060 inopn 21956 isbasisg 22005 basis1 22008 basis2 22009 tgval 22013 fctop 22062 cctop 22064 ntrfval 22083 elcls 22132 clsndisj 22134 elcls3 22142 neindisj2 22182 tgrest 22218 restco 22223 restsn 22229 restcld 22231 restcldi 22232 restopnb 22234 neitr 22239 restcls 22240 ordtbaslem 22247 ordtrest2lem 22262 hausnei2 22412 cnhaus 22413 regsep2 22435 dishaus 22441 ordthauslem 22442 cmpsublem 22458 cmpsub 22459 nconnsubb 22482 connsubclo 22483 1stcelcls 22520 islly 22527 cldllycmp 22554 lly1stc 22555 locfincmp 22585 elkgen 22595 ptclsg 22674 dfac14lem 22676 txrest 22690 pthaus 22697 txhaus 22706 xkohaus 22712 xkoptsub 22713 regr1lem 22798 isfbas 22888 fbasssin 22895 fbun 22899 isfil 22906 fbunfip 22928 fgval 22929 filconn 22942 uzrest 22956 isufil2 22967 hauspwpwf1 23046 fclsopni 23074 fclsnei 23078 fclsrest 23083 fcfnei 23094 fcfneii 23096 tsmsfbas 23187 ustincl 23267 ustdiag 23268 ustinvel 23269 ustexhalf 23270 ust0 23279 trust 23289 restutopopn 23298 lpbl 23565 methaus 23582 metrest 23586 restmetu 23632 qtopbaslem 23828 qdensere 23839 xrtgioo 23875 metnrmlem3 23930 icoopnst 24008 iocopnst 24009 ovolicc2lem2 24587 ovolicc2lem5 24590 mblsplit 24601 limcnlp 24947 ellimc3 24948 limcflf 24950 limciun 24963 ig1pval 25242 shincl 29644 shmodi 29653 omlsi 29667 pjoml 29699 chm0 29754 chincl 29762 chdmm1 29788 ledi 29803 cmbr 29847 cmbr3 29871 mdbr 30557 dmdmd 30563 dmdi 30565 dmdbr3 30568 dmdbr4 30569 mdslmd1lem4 30591 cvmd 30599 cvexch 30637 dmdbr6ati 30686 mddmdin0i 30694 difeq 30766 ofpreima2 30905 rspectopn 31719 ordtrest2NEWlem 31774 inelsros 32046 diffiunisros 32047 measvuni 32082 measinb 32089 inelcarsg 32178 carsgclctunlem2 32186 totprob 32294 ballotlemgval 32390 cvmscbv 33120 cvmsdisj 33132 cvmsss2 33136 satfv1 33225 nepss 33564 brapply 34167 opnbnd 34441 isfne 34455 tailfb 34493 bj-restsn 35180 bj-restpw 35190 bj-rest0 35191 bj-restb 35192 nlpfvineqsn 35507 fvineqsnf1 35508 pibt2 35515 ptrest 35703 poimirlem30 35734 mblfinlem2 35742 bndss 35871 qsdisjALTV 36655 redundss3 36668 lcvexchlem4 36978 fipjust 41061 ntrkbimka 41537 ntrk0kbimka 41538 clsk3nimkb 41539 isotone2 41548 ntrclskb 41568 ntrclsk3 41569 ntrclsk13 41570 ismnushort 41808 elrestd 42547 islptre 43050 islpcn 43070 subsaliuncllem 43786 subsaliuncl 43787 nnfoctbdjlem 43883 caragensplit 43928 vonvolmbllem 44088 vonvolmbl 44089 incsmflem 44164 decsmflem 44188 smflimlem2 44194 smflimlem3 44195 smflim 44199 smfpimcclem 44227 uzlidlring 45375 rngcvalALTV 45407 rngcval 45408 ringcvalALTV 45453 ringcval 45454 sepfsepc 46109 iscnrm3rlem2 46123 iscnrm3rlem8 46129 iscnrm3llem2 46132 |
Copyright terms: Public domain | W3C validator |