![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3406 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
2 | dfin5 3837 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
3 | dfin5 3837 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2839 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 {crab 3092 ∩ cin 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-rab 3097 df-in 3836 |
This theorem is referenced by: ineq2 4070 ineq12 4071 ineq1i 4072 ineq1d 4075 unineq 4141 dfrab3ss 4168 disjeq0 4288 intprg 4783 inex1g 5080 reseq1 5689 sspred 5994 isofrlem 6916 qsdisj 8174 fiint 8590 elfiun 8689 dffi3 8690 inf3lema 8881 dfac5lem5 9347 kmlem12 9381 kmlem14 9383 fin23lem24 9542 fin23lem26 9545 fin23lem23 9546 fin23lem22 9547 fin23lem27 9548 ingru 10035 uzin2 14565 incexclem 15051 elrestr 16558 firest 16562 inopn 21211 isbasisg 21259 basis1 21262 basis2 21263 tgval 21267 fctop 21316 cctop 21318 ntrfval 21336 elcls 21385 clsndisj 21387 elcls3 21395 neindisj2 21435 tgrest 21471 restco 21476 restsn 21482 restcld 21484 restcldi 21485 restopnb 21487 neitr 21492 restcls 21493 ordtbaslem 21500 ordtrest2lem 21515 hausnei2 21665 cnhaus 21666 regsep2 21688 dishaus 21694 ordthauslem 21695 cmpsublem 21711 cmpsub 21712 nconnsubb 21735 connsubclo 21736 1stcelcls 21773 islly 21780 cldllycmp 21807 lly1stc 21808 locfincmp 21838 elkgen 21848 ptclsg 21927 dfac14lem 21929 txrest 21943 pthaus 21950 txhaus 21959 xkohaus 21965 xkoptsub 21966 regr1lem 22051 isfbas 22141 fbasssin 22148 fbun 22152 isfil 22159 fbunfip 22181 fgval 22182 filconn 22195 uzrest 22209 isufil2 22220 hauspwpwf1 22299 fclsopni 22327 fclsnei 22331 fclsrest 22336 fcfnei 22347 fcfneii 22349 tsmsfbas 22439 ustincl 22519 ustdiag 22520 ustinvel 22521 ustexhalf 22522 ust0 22531 trust 22541 restutopopn 22550 lpbl 22816 methaus 22833 metrest 22837 restmetu 22883 qtopbaslem 23070 qdensere 23081 xrtgioo 23117 metnrmlem3 23172 icoopnst 23246 iocopnst 23247 ovolicc2lem2 23822 ovolicc2lem5 23825 mblsplit 23836 limcnlp 24179 ellimc3 24180 limcflf 24182 limciun 24195 ig1pval 24469 shincl 28939 shmodi 28948 omlsi 28962 pjoml 28994 chm0 29049 chincl 29057 chdmm1 29083 ledi 29098 cmbr 29142 cmbr3 29166 mdbr 29852 dmdmd 29858 dmdi 29860 dmdbr3 29863 dmdbr4 29864 mdslmd1lem4 29886 cvmd 29894 cvexch 29932 dmdbr6ati 29981 mddmdin0i 29989 difeq 30056 ofpreima2 30173 ordtrest2NEWlem 30815 inelsros 31088 diffiunisros 31089 measvuni 31124 measinb 31131 inelcarsg 31220 carsgclctunlem2 31228 totprob 31337 ballotlemgval 31433 cvmscbv 32096 cvmsdisj 32108 cvmsss2 32112 nepss 32474 brapply 32926 opnbnd 33200 isfne 33214 tailfb 33252 bj-restsn 33889 bj-restpw 33899 bj-rest0 33900 bj-restb 33901 nlpfvineqsn 34137 fvineqsnf1 34138 pibt2 34145 ptrest 34338 poimirlem30 34369 mblfinlem2 34377 bndss 34512 qsdisjALTV 35301 redundss3 35314 lcvexchlem4 35624 fipjust 39292 ntrkbimka 39757 ntrk0kbimka 39758 clsk3nimkb 39759 isotone2 39768 ntrclskb 39788 ntrclsk3 39789 ntrclsk13 39790 elrestd 40803 islptre 41337 islpcn 41357 subsaliuncllem 42077 subsaliuncl 42078 nnfoctbdjlem 42174 caragensplit 42219 vonvolmbllem 42379 vonvolmbl 42380 incsmflem 42455 decsmflem 42479 smflimlem2 42485 smflimlem3 42486 smflim 42490 smfpimcclem 42518 uzlidlring 43570 rngcvalALTV 43602 rngcval 43603 ringcvalALTV 43648 ringcval 43649 |
Copyright terms: Public domain | W3C validator |