| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| Ref | Expression |
|---|---|
| ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3420 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
| 2 | dfin5 3922 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
| 3 | dfin5 3922 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 |
| This theorem is referenced by: ineq2 4177 ineq12 4178 ineq1i 4179 ineq1d 4182 unineq 4251 dfrab3ss 4286 disjeq0 4419 inex1g 5274 reseq1 5944 sspred 6283 isofrlem 7315 qsdisj 8767 fiint 9277 fiintOLD 9278 elfiun 9381 dffi3 9382 inf3lema 9577 dfac5lem5 10080 kmlem12 10115 kmlem14 10117 fin23lem24 10275 fin23lem26 10278 fin23lem23 10279 fin23lem22 10280 fin23lem27 10281 ingru 10768 uzin2 15311 incexclem 15802 elrestr 17391 firest 17395 rngcval 20527 ringcval 20556 inopn 22786 isbasisg 22834 basis1 22837 basis2 22838 tgval 22842 fctop 22891 cctop 22893 ntrfval 22911 elcls 22960 clsndisj 22962 elcls3 22970 neindisj2 23010 tgrest 23046 restco 23051 restsn 23057 restcld 23059 restcldi 23060 restopnb 23062 neitr 23067 restcls 23068 ordtbaslem 23075 ordtrest2lem 23090 hausnei2 23240 cnhaus 23241 regsep2 23263 dishaus 23269 ordthauslem 23270 cmpsublem 23286 cmpsub 23287 nconnsubb 23310 connsubclo 23311 1stcelcls 23348 islly 23355 cldllycmp 23382 lly1stc 23383 locfincmp 23413 elkgen 23423 ptclsg 23502 dfac14lem 23504 txrest 23518 pthaus 23525 txhaus 23534 xkohaus 23540 xkoptsub 23541 regr1lem 23626 isfbas 23716 fbasssin 23723 fbun 23727 isfil 23734 fbunfip 23756 fgval 23757 filconn 23770 uzrest 23784 isufil2 23795 hauspwpwf1 23874 fclsopni 23902 fclsnei 23906 fclsrest 23911 fcfnei 23922 fcfneii 23924 tsmsfbas 24015 ustincl 24095 ustdiag 24096 ustinvel 24097 ustexhalf 24098 ust0 24107 trust 24117 restutopopn 24126 lpbl 24391 methaus 24408 metrest 24412 restmetu 24458 qtopbaslem 24646 qdensere 24657 xrtgioo 24695 metnrmlem3 24750 icoopnst 24836 iocopnst 24837 ovolicc2lem2 25419 ovolicc2lem5 25422 mblsplit 25433 limcnlp 25779 ellimc3 25780 limcflf 25782 limciun 25795 ig1pval 26081 shincl 31310 shmodi 31319 omlsi 31333 pjoml 31365 chm0 31420 chincl 31428 chdmm1 31454 ledi 31469 cmbr 31513 cmbr3 31537 mdbr 32223 dmdmd 32229 dmdi 32231 dmdbr3 32234 dmdbr4 32235 mdslmd1lem4 32257 cvmd 32265 cvexch 32303 dmdbr6ati 32352 mddmdin0i 32360 difeq 32447 ofpreima2 32590 ssdifidlprm 33429 ufdprmidl 33512 1arithufdlem4 33518 rspectopn 33857 ordtrest2NEWlem 33912 inelsros 34168 diffiunisros 34169 measvuni 34204 measinb 34211 inelcarsg 34302 carsgclctunlem2 34310 totprob 34418 ballotlemgval 34515 cvmscbv 35245 cvmsdisj 35257 cvmsss2 35261 satfv1 35350 nepss 35705 brapply 35926 opnbnd 36313 isfne 36327 tailfb 36365 bj-restsn 37070 bj-restpw 37080 bj-rest0 37081 bj-restb 37082 nlpfvineqsn 37397 fvineqsnf1 37398 pibt2 37405 ptrest 37613 poimirlem30 37644 mblfinlem2 37652 bndss 37780 qsdisjALTV 38606 redundss3 38619 lcvexchlem4 39030 fipjust 43554 ntrkbimka 44027 ntrk0kbimka 44028 clsk3nimkb 44029 isotone2 44038 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 ismnushort 44290 relpfrlem 44943 permac8prim 45004 elrestd 45102 restsubel 45147 islptre 45617 islpcn 45637 subsaliuncllem 46355 subsaliuncl 46356 nnfoctbdjlem 46453 caragensplit 46498 vonvolmbllem 46658 vonvolmbl 46659 incsmflem 46739 decsmflem 46764 smflimlem2 46770 smflimlem3 46771 smflim 46775 smfpimcclem 46805 uzlidlring 48223 rngcvalALTV 48253 ringcvalALTV 48277 sepfsepc 48916 iscnrm3rlem2 48929 iscnrm3rlem8 48935 iscnrm3llem2 48938 |
| Copyright terms: Public domain | W3C validator |