![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3458 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
2 | dfin5 3984 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
3 | dfin5 3984 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 |
This theorem is referenced by: ineq2 4235 ineq12 4236 ineq1i 4237 ineq1d 4240 unineq 4307 dfrab3ss 4342 disjeq0 4479 inex1g 5337 reseq1 6003 sspred 6341 isofrlem 7376 qsdisj 8852 fiint 9394 fiintOLD 9395 elfiun 9499 dffi3 9500 inf3lema 9693 dfac5lem5 10196 kmlem12 10231 kmlem14 10233 fin23lem24 10391 fin23lem26 10394 fin23lem23 10395 fin23lem22 10396 fin23lem27 10397 ingru 10884 uzin2 15393 incexclem 15884 elrestr 17488 firest 17492 rngcval 20640 ringcval 20669 inopn 22926 isbasisg 22975 basis1 22978 basis2 22979 tgval 22983 fctop 23032 cctop 23034 ntrfval 23053 elcls 23102 clsndisj 23104 elcls3 23112 neindisj2 23152 tgrest 23188 restco 23193 restsn 23199 restcld 23201 restcldi 23202 restopnb 23204 neitr 23209 restcls 23210 ordtbaslem 23217 ordtrest2lem 23232 hausnei2 23382 cnhaus 23383 regsep2 23405 dishaus 23411 ordthauslem 23412 cmpsublem 23428 cmpsub 23429 nconnsubb 23452 connsubclo 23453 1stcelcls 23490 islly 23497 cldllycmp 23524 lly1stc 23525 locfincmp 23555 elkgen 23565 ptclsg 23644 dfac14lem 23646 txrest 23660 pthaus 23667 txhaus 23676 xkohaus 23682 xkoptsub 23683 regr1lem 23768 isfbas 23858 fbasssin 23865 fbun 23869 isfil 23876 fbunfip 23898 fgval 23899 filconn 23912 uzrest 23926 isufil2 23937 hauspwpwf1 24016 fclsopni 24044 fclsnei 24048 fclsrest 24053 fcfnei 24064 fcfneii 24066 tsmsfbas 24157 ustincl 24237 ustdiag 24238 ustinvel 24239 ustexhalf 24240 ust0 24249 trust 24259 restutopopn 24268 lpbl 24537 methaus 24554 metrest 24558 restmetu 24604 qtopbaslem 24800 qdensere 24811 xrtgioo 24847 metnrmlem3 24902 icoopnst 24988 iocopnst 24989 ovolicc2lem2 25572 ovolicc2lem5 25575 mblsplit 25586 limcnlp 25933 ellimc3 25934 limcflf 25936 limciun 25949 ig1pval 26235 shincl 31413 shmodi 31422 omlsi 31436 pjoml 31468 chm0 31523 chincl 31531 chdmm1 31557 ledi 31572 cmbr 31616 cmbr3 31640 mdbr 32326 dmdmd 32332 dmdi 32334 dmdbr3 32337 dmdbr4 32338 mdslmd1lem4 32360 cvmd 32368 cvexch 32406 dmdbr6ati 32455 mddmdin0i 32463 difeq 32548 ofpreima2 32684 ssdifidlprm 33451 ufdprmidl 33534 1arithufdlem4 33540 rspectopn 33813 ordtrest2NEWlem 33868 inelsros 34142 diffiunisros 34143 measvuni 34178 measinb 34185 inelcarsg 34276 carsgclctunlem2 34284 totprob 34392 ballotlemgval 34488 cvmscbv 35226 cvmsdisj 35238 cvmsss2 35242 satfv1 35331 nepss 35680 brapply 35902 opnbnd 36291 isfne 36305 tailfb 36343 bj-restsn 37048 bj-restpw 37058 bj-rest0 37059 bj-restb 37060 nlpfvineqsn 37375 fvineqsnf1 37376 pibt2 37383 ptrest 37579 poimirlem30 37610 mblfinlem2 37618 bndss 37746 qsdisjALTV 38571 redundss3 38584 lcvexchlem4 38993 fipjust 43527 ntrkbimka 44000 ntrk0kbimka 44001 clsk3nimkb 44002 isotone2 44011 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 ismnushort 44270 elrestd 45010 restsubel 45058 islptre 45540 islpcn 45560 subsaliuncllem 46278 subsaliuncl 46279 nnfoctbdjlem 46376 caragensplit 46421 vonvolmbllem 46581 vonvolmbl 46582 incsmflem 46662 decsmflem 46687 smflimlem2 46693 smflimlem3 46694 smflim 46698 smfpimcclem 46728 uzlidlring 47958 rngcvalALTV 47988 ringcvalALTV 48012 sepfsepc 48607 iscnrm3rlem2 48621 iscnrm3rlem8 48627 iscnrm3llem2 48630 |
Copyright terms: Public domain | W3C validator |