| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| Ref | Expression |
|---|---|
| ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3409 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
| 2 | dfin5 3905 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
| 3 | dfin5 3905 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 |
| This theorem is referenced by: ineq2 4161 ineq12 4162 ineq1i 4163 ineq1d 4166 unineq 4235 dfrab3ss 4270 disjeq0 4403 inex1g 5255 reseq1 5921 sspred 6257 isofrlem 7274 qsdisj 8718 fiint 9211 elfiun 9314 dffi3 9315 inf3lema 9514 dfac5lem5 10018 kmlem12 10053 kmlem14 10055 fin23lem24 10213 fin23lem26 10216 fin23lem23 10217 fin23lem22 10218 fin23lem27 10219 ingru 10706 uzin2 15252 incexclem 15743 elrestr 17332 firest 17336 rngcval 20533 ringcval 20562 inopn 22814 isbasisg 22862 basis1 22865 basis2 22866 tgval 22870 fctop 22919 cctop 22921 ntrfval 22939 elcls 22988 clsndisj 22990 elcls3 22998 neindisj2 23038 tgrest 23074 restco 23079 restsn 23085 restcld 23087 restcldi 23088 restopnb 23090 neitr 23095 restcls 23096 ordtbaslem 23103 ordtrest2lem 23118 hausnei2 23268 cnhaus 23269 regsep2 23291 dishaus 23297 ordthauslem 23298 cmpsublem 23314 cmpsub 23315 nconnsubb 23338 connsubclo 23339 1stcelcls 23376 islly 23383 cldllycmp 23410 lly1stc 23411 locfincmp 23441 elkgen 23451 ptclsg 23530 dfac14lem 23532 txrest 23546 pthaus 23553 txhaus 23562 xkohaus 23568 xkoptsub 23569 regr1lem 23654 isfbas 23744 fbasssin 23751 fbun 23755 isfil 23762 fbunfip 23784 fgval 23785 filconn 23798 uzrest 23812 isufil2 23823 hauspwpwf1 23902 fclsopni 23930 fclsnei 23934 fclsrest 23939 fcfnei 23950 fcfneii 23952 tsmsfbas 24043 ustincl 24123 ustdiag 24124 ustinvel 24125 ustexhalf 24126 ust0 24135 trust 24144 restutopopn 24153 lpbl 24418 methaus 24435 metrest 24439 restmetu 24485 qtopbaslem 24673 qdensere 24684 xrtgioo 24722 metnrmlem3 24777 icoopnst 24863 iocopnst 24864 ovolicc2lem2 25446 ovolicc2lem5 25449 mblsplit 25460 limcnlp 25806 ellimc3 25807 limcflf 25809 limciun 25822 ig1pval 26108 shincl 31361 shmodi 31370 omlsi 31384 pjoml 31416 chm0 31471 chincl 31479 chdmm1 31505 ledi 31520 cmbr 31564 cmbr3 31588 mdbr 32274 dmdmd 32280 dmdi 32282 dmdbr3 32285 dmdbr4 32286 mdslmd1lem4 32308 cvmd 32316 cvexch 32354 dmdbr6ati 32403 mddmdin0i 32411 difeq 32498 ofpreima2 32648 ssdifidlprm 33423 ufdprmidl 33506 1arithufdlem4 33512 rspectopn 33880 ordtrest2NEWlem 33935 inelsros 34191 diffiunisros 34192 measvuni 34227 measinb 34234 inelcarsg 34324 carsgclctunlem2 34332 totprob 34440 ballotlemgval 34537 cvmscbv 35302 cvmsdisj 35314 cvmsss2 35318 satfv1 35407 nepss 35762 brapply 35980 opnbnd 36367 isfne 36381 tailfb 36419 bj-restsn 37124 bj-restpw 37134 bj-rest0 37135 bj-restb 37136 nlpfvineqsn 37451 fvineqsnf1 37452 pibt2 37459 ptrest 37667 poimirlem30 37698 mblfinlem2 37706 bndss 37834 qsdisjALTV 38660 redundss3 38673 lcvexchlem4 39084 fipjust 43606 ntrkbimka 44079 ntrk0kbimka 44080 clsk3nimkb 44081 isotone2 44090 ntrclskb 44110 ntrclsk3 44111 ntrclsk13 44112 ismnushort 44342 relpfrlem 44994 permac8prim 45055 elrestd 45153 restsubel 45198 islptre 45667 islpcn 45685 subsaliuncllem 46403 subsaliuncl 46404 nnfoctbdjlem 46501 caragensplit 46546 vonvolmbllem 46706 vonvolmbl 46707 incsmflem 46787 decsmflem 46812 smflimlem2 46818 smflimlem3 46819 smflim 46823 smfpimcclem 46853 uzlidlring 48274 rngcvalALTV 48304 ringcvalALTV 48328 sepfsepc 48967 iscnrm3rlem2 48980 iscnrm3rlem8 48986 iscnrm3llem2 48989 |
| Copyright terms: Public domain | W3C validator |