![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3447 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
2 | dfin5 3957 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
3 | dfin5 3957 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-in 3956 |
This theorem is referenced by: ineq2 4207 ineq12 4208 ineq1i 4209 ineq1d 4212 unineq 4278 dfrab3ss 4313 disjeq0 4456 intprgOLD 4989 inex1g 5320 reseq1 5976 sspred 6310 isofrlem 7337 qsdisj 8788 fiint 9324 elfiun 9425 dffi3 9426 inf3lema 9619 dfac5lem5 10122 kmlem12 10156 kmlem14 10158 fin23lem24 10317 fin23lem26 10320 fin23lem23 10321 fin23lem22 10322 fin23lem27 10323 ingru 10810 uzin2 15291 incexclem 15782 elrestr 17374 firest 17378 inopn 22401 isbasisg 22450 basis1 22453 basis2 22454 tgval 22458 fctop 22507 cctop 22509 ntrfval 22528 elcls 22577 clsndisj 22579 elcls3 22587 neindisj2 22627 tgrest 22663 restco 22668 restsn 22674 restcld 22676 restcldi 22677 restopnb 22679 neitr 22684 restcls 22685 ordtbaslem 22692 ordtrest2lem 22707 hausnei2 22857 cnhaus 22858 regsep2 22880 dishaus 22886 ordthauslem 22887 cmpsublem 22903 cmpsub 22904 nconnsubb 22927 connsubclo 22928 1stcelcls 22965 islly 22972 cldllycmp 22999 lly1stc 23000 locfincmp 23030 elkgen 23040 ptclsg 23119 dfac14lem 23121 txrest 23135 pthaus 23142 txhaus 23151 xkohaus 23157 xkoptsub 23158 regr1lem 23243 isfbas 23333 fbasssin 23340 fbun 23344 isfil 23351 fbunfip 23373 fgval 23374 filconn 23387 uzrest 23401 isufil2 23412 hauspwpwf1 23491 fclsopni 23519 fclsnei 23523 fclsrest 23528 fcfnei 23539 fcfneii 23541 tsmsfbas 23632 ustincl 23712 ustdiag 23713 ustinvel 23714 ustexhalf 23715 ust0 23724 trust 23734 restutopopn 23743 lpbl 24012 methaus 24029 metrest 24033 restmetu 24079 qtopbaslem 24275 qdensere 24286 xrtgioo 24322 metnrmlem3 24377 icoopnst 24455 iocopnst 24456 ovolicc2lem2 25035 ovolicc2lem5 25038 mblsplit 25049 limcnlp 25395 ellimc3 25396 limcflf 25398 limciun 25411 ig1pval 25690 shincl 30634 shmodi 30643 omlsi 30657 pjoml 30689 chm0 30744 chincl 30752 chdmm1 30778 ledi 30793 cmbr 30837 cmbr3 30861 mdbr 31547 dmdmd 31553 dmdi 31555 dmdbr3 31558 dmdbr4 31559 mdslmd1lem4 31581 cvmd 31589 cvexch 31627 dmdbr6ati 31676 mddmdin0i 31684 difeq 31756 ofpreima2 31891 rspectopn 32847 ordtrest2NEWlem 32902 inelsros 33176 diffiunisros 33177 measvuni 33212 measinb 33219 inelcarsg 33310 carsgclctunlem2 33318 totprob 33426 ballotlemgval 33522 cvmscbv 34249 cvmsdisj 34261 cvmsss2 34265 satfv1 34354 nepss 34687 brapply 34910 opnbnd 35210 isfne 35224 tailfb 35262 bj-restsn 35963 bj-restpw 35973 bj-rest0 35974 bj-restb 35975 nlpfvineqsn 36290 fvineqsnf1 36291 pibt2 36298 ptrest 36487 poimirlem30 36518 mblfinlem2 36526 bndss 36654 qsdisjALTV 37485 redundss3 37498 lcvexchlem4 37907 fipjust 42316 ntrkbimka 42789 ntrk0kbimka 42790 clsk3nimkb 42791 isotone2 42800 ntrclskb 42820 ntrclsk3 42821 ntrclsk13 42822 ismnushort 43060 elrestd 43797 restsubel 43847 islptre 44335 islpcn 44355 subsaliuncllem 45073 subsaliuncl 45074 nnfoctbdjlem 45171 caragensplit 45216 vonvolmbllem 45376 vonvolmbl 45377 incsmflem 45457 decsmflem 45482 smflimlem2 45488 smflimlem3 45489 smflim 45493 smfpimcclem 45523 uzlidlring 46827 rngcvalALTV 46859 rngcval 46860 ringcvalALTV 46905 ringcval 46906 sepfsepc 47560 iscnrm3rlem2 47574 iscnrm3rlem8 47580 iscnrm3llem2 47583 |
Copyright terms: Public domain | W3C validator |