| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
| Ref | Expression |
|---|---|
| ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3435 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶}) | |
| 2 | dfin5 3939 | . 2 ⊢ (𝐴 ∩ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶} | |
| 3 | dfin5 3939 | . 2 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-in 3938 |
| This theorem is referenced by: ineq2 4194 ineq12 4195 ineq1i 4196 ineq1d 4199 unineq 4268 dfrab3ss 4303 disjeq0 4436 inex1g 5294 reseq1 5965 sspred 6304 isofrlem 7338 qsdisj 8813 fiint 9343 fiintOLD 9344 elfiun 9447 dffi3 9448 inf3lema 9643 dfac5lem5 10146 kmlem12 10181 kmlem14 10183 fin23lem24 10341 fin23lem26 10344 fin23lem23 10345 fin23lem22 10346 fin23lem27 10347 ingru 10834 uzin2 15368 incexclem 15857 elrestr 17447 firest 17451 rngcval 20583 ringcval 20612 inopn 22842 isbasisg 22890 basis1 22893 basis2 22894 tgval 22898 fctop 22947 cctop 22949 ntrfval 22967 elcls 23016 clsndisj 23018 elcls3 23026 neindisj2 23066 tgrest 23102 restco 23107 restsn 23113 restcld 23115 restcldi 23116 restopnb 23118 neitr 23123 restcls 23124 ordtbaslem 23131 ordtrest2lem 23146 hausnei2 23296 cnhaus 23297 regsep2 23319 dishaus 23325 ordthauslem 23326 cmpsublem 23342 cmpsub 23343 nconnsubb 23366 connsubclo 23367 1stcelcls 23404 islly 23411 cldllycmp 23438 lly1stc 23439 locfincmp 23469 elkgen 23479 ptclsg 23558 dfac14lem 23560 txrest 23574 pthaus 23581 txhaus 23590 xkohaus 23596 xkoptsub 23597 regr1lem 23682 isfbas 23772 fbasssin 23779 fbun 23783 isfil 23790 fbunfip 23812 fgval 23813 filconn 23826 uzrest 23840 isufil2 23851 hauspwpwf1 23930 fclsopni 23958 fclsnei 23962 fclsrest 23967 fcfnei 23978 fcfneii 23980 tsmsfbas 24071 ustincl 24151 ustdiag 24152 ustinvel 24153 ustexhalf 24154 ust0 24163 trust 24173 restutopopn 24182 lpbl 24447 methaus 24464 metrest 24468 restmetu 24514 qtopbaslem 24702 qdensere 24713 xrtgioo 24751 metnrmlem3 24806 icoopnst 24892 iocopnst 24893 ovolicc2lem2 25476 ovolicc2lem5 25479 mblsplit 25490 limcnlp 25836 ellimc3 25837 limcflf 25839 limciun 25852 ig1pval 26138 shincl 31367 shmodi 31376 omlsi 31390 pjoml 31422 chm0 31477 chincl 31485 chdmm1 31511 ledi 31526 cmbr 31570 cmbr3 31594 mdbr 32280 dmdmd 32286 dmdi 32288 dmdbr3 32291 dmdbr4 32292 mdslmd1lem4 32314 cvmd 32322 cvexch 32360 dmdbr6ati 32409 mddmdin0i 32417 difeq 32504 ofpreima2 32649 ssdifidlprm 33478 ufdprmidl 33561 1arithufdlem4 33567 rspectopn 33903 ordtrest2NEWlem 33958 inelsros 34214 diffiunisros 34215 measvuni 34250 measinb 34257 inelcarsg 34348 carsgclctunlem2 34356 totprob 34464 ballotlemgval 34561 cvmscbv 35285 cvmsdisj 35297 cvmsss2 35301 satfv1 35390 nepss 35740 brapply 35961 opnbnd 36348 isfne 36362 tailfb 36400 bj-restsn 37105 bj-restpw 37115 bj-rest0 37116 bj-restb 37117 nlpfvineqsn 37432 fvineqsnf1 37433 pibt2 37440 ptrest 37648 poimirlem30 37679 mblfinlem2 37687 bndss 37815 qsdisjALTV 38638 redundss3 38651 lcvexchlem4 39060 fipjust 43564 ntrkbimka 44037 ntrk0kbimka 44038 clsk3nimkb 44039 isotone2 44048 ntrclskb 44068 ntrclsk3 44069 ntrclsk13 44070 ismnushort 44300 relpfrlem 44953 permac8prim 45014 elrestd 45112 restsubel 45157 islptre 45628 islpcn 45648 subsaliuncllem 46366 subsaliuncl 46367 nnfoctbdjlem 46464 caragensplit 46509 vonvolmbllem 46669 vonvolmbl 46670 incsmflem 46750 decsmflem 46775 smflimlem2 46781 smflimlem3 46782 smflim 46786 smfpimcclem 46816 uzlidlring 48190 rngcvalALTV 48220 ringcvalALTV 48244 sepfsepc 48882 iscnrm3rlem2 48895 iscnrm3rlem8 48901 iscnrm3llem2 48904 |
| Copyright terms: Public domain | W3C validator |