Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4140 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | incom 4136 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4136 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-in 3895 |
This theorem is referenced by: ineq12 4142 ineq2i 4144 ineq2d 4147 uneqin 4213 intprgOLD 4916 wefrc 5584 onfr 6309 onnseq 8184 qsdisj 8592 disjenex 8931 fiint 9100 elfiun 9198 dffi3 9199 cplem2 9657 dfac5 9893 kmlem2 9916 kmlem13 9927 kmlem14 9928 ackbij1lem16 10000 fin23lem12 10096 fin23lem19 10101 fin23lem33 10110 uzin2 15065 pgpfac1lem3 19689 pgpfac1lem5 19691 pgpfac1 19692 inopn 22057 basis1 22109 basis2 22110 baspartn 22113 fctop 22163 cctop 22165 ordtbaslem 22348 hausnei2 22513 cnhaus 22514 nrmsep 22517 isnrm2 22518 dishaus 22542 ordthauslem 22543 dfconn2 22579 nconnsubb 22583 finlocfin 22680 dissnlocfin 22689 locfindis 22690 kgeni 22697 pthaus 22798 txhaus 22807 xkohaus 22813 regr1lem 22899 fbasssin 22996 fbun 23000 fbunfip 23029 filconn 23043 isufil2 23068 ufileu 23079 filufint 23080 fmfnfmlem4 23117 fmfnfm 23118 fclsopni 23175 fclsbas 23181 fclsrest 23184 isfcf 23194 tsmsfbas 23288 ustincl 23368 ust0 23380 metreslem 23524 methaus 23685 qtopbaslem 23931 metnrmlem3 24033 ismbl 24699 shincl 29752 chincl 29870 chdmm1 29896 ledi 29911 cmbr 29955 cmbr3i 29971 cmbr3 29979 pjoml2 29982 stcltrlem1 30647 mdbr 30665 dmdbr 30670 cvmd 30707 cvexch 30745 sumdmdii 30786 mddmdin0i 30802 ofpreima2 31012 crefeq 31804 ldgenpisyslem1 32140 ldgenpisys 32143 inelsros 32155 diffiunisros 32156 elcarsg 32281 carsgclctunlem2 32295 carsgclctun 32297 ballotlemfval 32465 ballotlemgval 32499 cvmscbv 33229 cvmsdisj 33241 cvmsss2 33245 satfv1 33334 nepss 33671 tailfb 34575 bj-0int 35281 mblfinlem2 35824 qsdisjALTV 36735 lshpinN 37010 elrfi 40523 fipjust 41179 conrel1d 41278 ntrk0kbimka 41656 clsk3nimkb 41657 isotone2 41666 ntrclskb 41686 ntrclsk3 41687 ntrclsk13 41688 csbresgVD 42522 disjf1 42727 qinioo 43080 fouriersw 43779 nnfoctbdjlem 44000 meadjun 44007 caragenel 44040 sepnsepolem2 46227 sepfsepc 46232 iscnrm3rlem8 46252 iscnrm3llem2 46255 |
Copyright terms: Public domain | W3C validator |