| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4186 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | incom 4182 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4182 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2794 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∩ cin 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-in 3931 |
| This theorem is referenced by: ineq12 4188 ineq2i 4190 ineq2d 4193 uneqin 4262 wefrc 5645 onfr 6388 onnseq 8352 qsdisj 8802 disjenex 9143 fiint 9332 fiintOLD 9333 elfiun 9436 dffi3 9437 cplem2 9896 dfac5 10135 kmlem2 10158 kmlem13 10169 kmlem14 10170 ackbij1lem16 10240 fin23lem12 10337 fin23lem19 10342 fin23lem33 10351 uzin2 15350 pgpfac1lem3 20045 pgpfac1lem5 20047 pgpfac1 20048 inopn 22822 basis1 22873 basis2 22874 baspartn 22877 fctop 22927 cctop 22929 ordtbaslem 23111 hausnei2 23276 cnhaus 23277 nrmsep 23280 isnrm2 23281 dishaus 23305 ordthauslem 23306 dfconn2 23342 nconnsubb 23346 finlocfin 23443 dissnlocfin 23452 locfindis 23453 kgeni 23460 pthaus 23561 txhaus 23570 xkohaus 23576 regr1lem 23662 fbasssin 23759 fbun 23763 fbunfip 23792 filconn 23806 isufil2 23831 ufileu 23842 filufint 23843 fmfnfmlem4 23880 fmfnfm 23881 fclsopni 23938 fclsbas 23944 fclsrest 23947 isfcf 23957 tsmsfbas 24051 ustincl 24131 ust0 24143 metreslem 24286 methaus 24444 qtopbaslem 24682 metnrmlem3 24786 ismbl 25464 shincl 31294 chincl 31412 chdmm1 31438 ledi 31453 cmbr 31497 cmbr3i 31513 cmbr3 31521 pjoml2 31524 stcltrlem1 32189 mdbr 32207 dmdbr 32212 cvmd 32249 cvexch 32287 sumdmdii 32328 mddmdin0i 32344 ofpreima2 32577 ssdifidllem 33389 ssdifidl 33390 ssdifidlprm 33391 1arithufdlem4 33480 crefeq 33784 ldgenpisyslem1 34102 ldgenpisys 34105 inelsros 34117 diffiunisros 34118 elcarsg 34245 carsgclctunlem2 34259 carsgclctun 34261 ballotlemfval 34430 ballotlemgval 34464 cvmscbv 35201 cvmsdisj 35213 cvmsss2 35217 satfv1 35306 nepss 35656 tailfb 36316 bj-0int 37040 mblfinlem2 37603 qsdisjALTV 38554 lshpinN 38928 elrfi 42642 fipjust 43514 conrel1d 43612 ntrk0kbimka 43988 clsk3nimkb 43989 isotone2 43998 ntrclskb 44018 ntrclsk3 44019 ntrclsk13 44020 csbresgVD 44846 wfac8prim 44954 disjf1 45134 qinioo 45492 fouriersw 46190 nnfoctbdjlem 46414 meadjun 46421 caragenel 46454 sepnsepolem2 48776 sepfsepc 48781 iscnrm3rlem8 48800 iscnrm3llem2 48803 |
| Copyright terms: Public domain | W3C validator |