| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4176 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | incom 4172 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4172 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 |
| This theorem is referenced by: ineq12 4178 ineq2i 4180 ineq2d 4183 uneqin 4252 wefrc 5632 onfr 6371 onnseq 8313 qsdisj 8767 disjenex 9099 fiint 9277 fiintOLD 9278 elfiun 9381 dffi3 9382 cplem2 9843 dfac5 10082 kmlem2 10105 kmlem13 10116 kmlem14 10117 ackbij1lem16 10187 fin23lem12 10284 fin23lem19 10289 fin23lem33 10298 uzin2 15311 pgpfac1lem3 20009 pgpfac1lem5 20011 pgpfac1 20012 inopn 22786 basis1 22837 basis2 22838 baspartn 22841 fctop 22891 cctop 22893 ordtbaslem 23075 hausnei2 23240 cnhaus 23241 nrmsep 23244 isnrm2 23245 dishaus 23269 ordthauslem 23270 dfconn2 23306 nconnsubb 23310 finlocfin 23407 dissnlocfin 23416 locfindis 23417 kgeni 23424 pthaus 23525 txhaus 23534 xkohaus 23540 regr1lem 23626 fbasssin 23723 fbun 23727 fbunfip 23756 filconn 23770 isufil2 23795 ufileu 23806 filufint 23807 fmfnfmlem4 23844 fmfnfm 23845 fclsopni 23902 fclsbas 23908 fclsrest 23911 isfcf 23921 tsmsfbas 24015 ustincl 24095 ust0 24107 metreslem 24250 methaus 24408 qtopbaslem 24646 metnrmlem3 24750 ismbl 25427 shincl 31310 chincl 31428 chdmm1 31454 ledi 31469 cmbr 31513 cmbr3i 31529 cmbr3 31537 pjoml2 31540 stcltrlem1 32205 mdbr 32223 dmdbr 32228 cvmd 32265 cvexch 32303 sumdmdii 32344 mddmdin0i 32360 ofpreima2 32590 ssdifidllem 33427 ssdifidl 33428 ssdifidlprm 33429 1arithufdlem4 33518 crefeq 33835 ldgenpisyslem1 34153 ldgenpisys 34156 inelsros 34168 diffiunisros 34169 elcarsg 34296 carsgclctunlem2 34310 carsgclctun 34312 ballotlemfval 34481 ballotlemgval 34515 cvmscbv 35245 cvmsdisj 35257 cvmsss2 35261 satfv1 35350 nepss 35705 tailfb 36365 bj-0int 37089 mblfinlem2 37652 qsdisjALTV 38606 lshpinN 38982 elrfi 42682 fipjust 43554 conrel1d 43652 ntrk0kbimka 44028 clsk3nimkb 44029 isotone2 44038 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 csbresgVD 44884 wfac8prim 44992 permac8prim 45004 disjf1 45177 qinioo 45533 fouriersw 46229 nnfoctbdjlem 46453 meadjun 46460 caragenel 46493 sepnsepolem2 48908 sepfsepc 48913 iscnrm3rlem8 48932 iscnrm3llem2 48935 |
| Copyright terms: Public domain | W3C validator |