Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4136 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | incom 4131 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4131 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 |
This theorem is referenced by: ineq12 4138 ineq2i 4140 ineq2d 4143 uneqin 4209 intprgOLD 4912 wefrc 5574 onfr 6290 onnseq 8146 qsdisj 8541 disjenex 8871 fiint 9021 elfiun 9119 dffi3 9120 cplem2 9579 dfac5 9815 kmlem2 9838 kmlem13 9849 kmlem14 9850 ackbij1lem16 9922 fin23lem12 10018 fin23lem19 10023 fin23lem33 10032 uzin2 14984 pgpfac1lem3 19595 pgpfac1lem5 19597 pgpfac1 19598 inopn 21956 basis1 22008 basis2 22009 baspartn 22012 fctop 22062 cctop 22064 ordtbaslem 22247 hausnei2 22412 cnhaus 22413 nrmsep 22416 isnrm2 22417 dishaus 22441 ordthauslem 22442 dfconn2 22478 nconnsubb 22482 finlocfin 22579 dissnlocfin 22588 locfindis 22589 kgeni 22596 pthaus 22697 txhaus 22706 xkohaus 22712 regr1lem 22798 fbasssin 22895 fbun 22899 fbunfip 22928 filconn 22942 isufil2 22967 ufileu 22978 filufint 22979 fmfnfmlem4 23016 fmfnfm 23017 fclsopni 23074 fclsbas 23080 fclsrest 23083 isfcf 23093 tsmsfbas 23187 ustincl 23267 ust0 23279 metreslem 23423 methaus 23582 qtopbaslem 23828 metnrmlem3 23930 ismbl 24595 shincl 29644 chincl 29762 chdmm1 29788 ledi 29803 cmbr 29847 cmbr3i 29863 cmbr3 29871 pjoml2 29874 stcltrlem1 30539 mdbr 30557 dmdbr 30562 cvmd 30599 cvexch 30637 sumdmdii 30678 mddmdin0i 30694 ofpreima2 30905 crefeq 31697 ldgenpisyslem1 32031 ldgenpisys 32034 inelsros 32046 diffiunisros 32047 elcarsg 32172 carsgclctunlem2 32186 carsgclctun 32188 ballotlemfval 32356 ballotlemgval 32390 cvmscbv 33120 cvmsdisj 33132 cvmsss2 33136 satfv1 33225 nepss 33564 tailfb 34493 bj-0int 35199 mblfinlem2 35742 qsdisjALTV 36655 lshpinN 36930 elrfi 40432 fipjust 41061 conrel1d 41160 ntrk0kbimka 41538 clsk3nimkb 41539 isotone2 41548 ntrclskb 41568 ntrclsk3 41569 ntrclsk13 41570 csbresgVD 42404 disjf1 42609 qinioo 42963 fouriersw 43662 nnfoctbdjlem 43883 meadjun 43890 caragenel 43923 sepnsepolem2 46104 sepfsepc 46109 iscnrm3rlem8 46129 iscnrm3llem2 46132 |
Copyright terms: Public domain | W3C validator |