![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4234 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | incom 4230 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4230 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 |
This theorem is referenced by: ineq12 4236 ineq2i 4238 ineq2d 4241 uneqin 4308 wefrc 5694 onfr 6434 onnseq 8400 qsdisj 8852 disjenex 9201 fiint 9394 fiintOLD 9395 elfiun 9499 dffi3 9500 cplem2 9959 dfac5 10198 kmlem2 10221 kmlem13 10232 kmlem14 10233 ackbij1lem16 10303 fin23lem12 10400 fin23lem19 10405 fin23lem33 10414 uzin2 15393 pgpfac1lem3 20121 pgpfac1lem5 20123 pgpfac1 20124 inopn 22926 basis1 22978 basis2 22979 baspartn 22982 fctop 23032 cctop 23034 ordtbaslem 23217 hausnei2 23382 cnhaus 23383 nrmsep 23386 isnrm2 23387 dishaus 23411 ordthauslem 23412 dfconn2 23448 nconnsubb 23452 finlocfin 23549 dissnlocfin 23558 locfindis 23559 kgeni 23566 pthaus 23667 txhaus 23676 xkohaus 23682 regr1lem 23768 fbasssin 23865 fbun 23869 fbunfip 23898 filconn 23912 isufil2 23937 ufileu 23948 filufint 23949 fmfnfmlem4 23986 fmfnfm 23987 fclsopni 24044 fclsbas 24050 fclsrest 24053 isfcf 24063 tsmsfbas 24157 ustincl 24237 ust0 24249 metreslem 24393 methaus 24554 qtopbaslem 24800 metnrmlem3 24902 ismbl 25580 shincl 31413 chincl 31531 chdmm1 31557 ledi 31572 cmbr 31616 cmbr3i 31632 cmbr3 31640 pjoml2 31643 stcltrlem1 32308 mdbr 32326 dmdbr 32331 cvmd 32368 cvexch 32406 sumdmdii 32447 mddmdin0i 32463 ofpreima2 32684 ssdifidllem 33449 ssdifidl 33450 ssdifidlprm 33451 1arithufdlem4 33540 crefeq 33791 ldgenpisyslem1 34127 ldgenpisys 34130 inelsros 34142 diffiunisros 34143 elcarsg 34270 carsgclctunlem2 34284 carsgclctun 34286 ballotlemfval 34454 ballotlemgval 34488 cvmscbv 35226 cvmsdisj 35238 cvmsss2 35242 satfv1 35331 nepss 35680 tailfb 36343 bj-0int 37067 mblfinlem2 37618 qsdisjALTV 38571 lshpinN 38945 elrfi 42650 fipjust 43527 conrel1d 43625 ntrk0kbimka 44001 clsk3nimkb 44002 isotone2 44011 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 csbresgVD 44866 disjf1 45090 qinioo 45453 fouriersw 46152 nnfoctbdjlem 46376 meadjun 46383 caragenel 46416 sepnsepolem2 48602 sepfsepc 48607 iscnrm3rlem8 48627 iscnrm3llem2 48630 |
Copyright terms: Public domain | W3C validator |