![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4220 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | incom 4216 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4216 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-in 3969 |
This theorem is referenced by: ineq12 4222 ineq2i 4224 ineq2d 4227 uneqin 4294 wefrc 5682 onfr 6424 onnseq 8382 qsdisj 8832 disjenex 9173 fiint 9363 fiintOLD 9364 elfiun 9467 dffi3 9468 cplem2 9927 dfac5 10166 kmlem2 10189 kmlem13 10200 kmlem14 10201 ackbij1lem16 10271 fin23lem12 10368 fin23lem19 10373 fin23lem33 10382 uzin2 15379 pgpfac1lem3 20111 pgpfac1lem5 20113 pgpfac1 20114 inopn 22920 basis1 22972 basis2 22973 baspartn 22976 fctop 23026 cctop 23028 ordtbaslem 23211 hausnei2 23376 cnhaus 23377 nrmsep 23380 isnrm2 23381 dishaus 23405 ordthauslem 23406 dfconn2 23442 nconnsubb 23446 finlocfin 23543 dissnlocfin 23552 locfindis 23553 kgeni 23560 pthaus 23661 txhaus 23670 xkohaus 23676 regr1lem 23762 fbasssin 23859 fbun 23863 fbunfip 23892 filconn 23906 isufil2 23931 ufileu 23942 filufint 23943 fmfnfmlem4 23980 fmfnfm 23981 fclsopni 24038 fclsbas 24044 fclsrest 24047 isfcf 24057 tsmsfbas 24151 ustincl 24231 ust0 24243 metreslem 24387 methaus 24548 qtopbaslem 24794 metnrmlem3 24896 ismbl 25574 shincl 31409 chincl 31527 chdmm1 31553 ledi 31568 cmbr 31612 cmbr3i 31628 cmbr3 31636 pjoml2 31639 stcltrlem1 32304 mdbr 32322 dmdbr 32327 cvmd 32364 cvexch 32402 sumdmdii 32443 mddmdin0i 32459 ofpreima2 32682 ssdifidllem 33463 ssdifidl 33464 ssdifidlprm 33465 1arithufdlem4 33554 crefeq 33805 ldgenpisyslem1 34143 ldgenpisys 34146 inelsros 34158 diffiunisros 34159 elcarsg 34286 carsgclctunlem2 34300 carsgclctun 34302 ballotlemfval 34470 ballotlemgval 34504 cvmscbv 35242 cvmsdisj 35254 cvmsss2 35258 satfv1 35347 nepss 35697 tailfb 36359 bj-0int 37083 mblfinlem2 37644 qsdisjALTV 38596 lshpinN 38970 elrfi 42681 fipjust 43554 conrel1d 43652 ntrk0kbimka 44028 clsk3nimkb 44029 isotone2 44038 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 csbresgVD 44892 disjf1 45125 qinioo 45487 fouriersw 46186 nnfoctbdjlem 46410 meadjun 46417 caragenel 46450 sepnsepolem2 48718 sepfsepc 48723 iscnrm3rlem8 48743 iscnrm3llem2 48746 |
Copyright terms: Public domain | W3C validator |