| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4164 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | incom 4160 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4160 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-in 3910 |
| This theorem is referenced by: ineq12 4166 ineq2i 4168 ineq2d 4171 uneqin 4240 wefrc 5613 onfr 6346 onnseq 8267 qsdisj 8721 disjenex 9052 fiint 9216 fiintOLD 9217 elfiun 9320 dffi3 9321 cplem2 9786 dfac5 10023 kmlem2 10046 kmlem13 10057 kmlem14 10058 ackbij1lem16 10128 fin23lem12 10225 fin23lem19 10230 fin23lem33 10239 uzin2 15252 pgpfac1lem3 19958 pgpfac1lem5 19960 pgpfac1 19961 inopn 22784 basis1 22835 basis2 22836 baspartn 22839 fctop 22889 cctop 22891 ordtbaslem 23073 hausnei2 23238 cnhaus 23239 nrmsep 23242 isnrm2 23243 dishaus 23267 ordthauslem 23268 dfconn2 23304 nconnsubb 23308 finlocfin 23405 dissnlocfin 23414 locfindis 23415 kgeni 23422 pthaus 23523 txhaus 23532 xkohaus 23538 regr1lem 23624 fbasssin 23721 fbun 23725 fbunfip 23754 filconn 23768 isufil2 23793 ufileu 23804 filufint 23805 fmfnfmlem4 23842 fmfnfm 23843 fclsopni 23900 fclsbas 23906 fclsrest 23909 isfcf 23919 tsmsfbas 24013 ustincl 24093 ust0 24105 metreslem 24248 methaus 24406 qtopbaslem 24644 metnrmlem3 24748 ismbl 25425 shincl 31325 chincl 31443 chdmm1 31469 ledi 31484 cmbr 31528 cmbr3i 31544 cmbr3 31552 pjoml2 31555 stcltrlem1 32220 mdbr 32238 dmdbr 32243 cvmd 32280 cvexch 32318 sumdmdii 32359 mddmdin0i 32375 ofpreima2 32610 ssdifidllem 33394 ssdifidl 33395 ssdifidlprm 33396 1arithufdlem4 33485 crefeq 33818 ldgenpisyslem1 34136 ldgenpisys 34139 inelsros 34151 diffiunisros 34152 elcarsg 34279 carsgclctunlem2 34293 carsgclctun 34295 ballotlemfval 34464 ballotlemgval 34498 cvmscbv 35241 cvmsdisj 35253 cvmsss2 35257 satfv1 35346 nepss 35701 tailfb 36361 bj-0int 37085 mblfinlem2 37648 qsdisjALTV 38602 lshpinN 38978 elrfi 42677 fipjust 43548 conrel1d 43646 ntrk0kbimka 44022 clsk3nimkb 44023 isotone2 44032 ntrclskb 44052 ntrclsk3 44053 ntrclsk13 44054 csbresgVD 44878 wfac8prim 44986 permac8prim 44998 disjf1 45171 qinioo 45526 fouriersw 46222 nnfoctbdjlem 46446 meadjun 46453 caragenel 46486 sepnsepolem2 48917 sepfsepc 48922 iscnrm3rlem8 48941 iscnrm3llem2 48944 |
| Copyright terms: Public domain | W3C validator |