| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4160 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | incom 4156 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4156 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 |
| This theorem is referenced by: ineq12 4162 ineq2i 4164 ineq2d 4167 uneqin 4236 wefrc 5608 onfr 6345 onnseq 8264 qsdisj 8718 disjenex 9048 fiint 9211 elfiun 9314 dffi3 9315 cplem2 9783 dfac5 10020 kmlem2 10043 kmlem13 10054 kmlem14 10055 ackbij1lem16 10125 fin23lem12 10222 fin23lem19 10227 fin23lem33 10236 uzin2 15252 pgpfac1lem3 19991 pgpfac1lem5 19993 pgpfac1 19994 inopn 22814 basis1 22865 basis2 22866 baspartn 22869 fctop 22919 cctop 22921 ordtbaslem 23103 hausnei2 23268 cnhaus 23269 nrmsep 23272 isnrm2 23273 dishaus 23297 ordthauslem 23298 dfconn2 23334 nconnsubb 23338 finlocfin 23435 dissnlocfin 23444 locfindis 23445 kgeni 23452 pthaus 23553 txhaus 23562 xkohaus 23568 regr1lem 23654 fbasssin 23751 fbun 23755 fbunfip 23784 filconn 23798 isufil2 23823 ufileu 23834 filufint 23835 fmfnfmlem4 23872 fmfnfm 23873 fclsopni 23930 fclsbas 23936 fclsrest 23939 isfcf 23949 tsmsfbas 24043 ustincl 24123 ust0 24135 metreslem 24277 methaus 24435 qtopbaslem 24673 metnrmlem3 24777 ismbl 25454 shincl 31361 chincl 31479 chdmm1 31505 ledi 31520 cmbr 31564 cmbr3i 31580 cmbr3 31588 pjoml2 31591 stcltrlem1 32256 mdbr 32274 dmdbr 32279 cvmd 32316 cvexch 32354 sumdmdii 32395 mddmdin0i 32411 ofpreima2 32648 ssdifidllem 33421 ssdifidl 33422 ssdifidlprm 33423 1arithufdlem4 33512 crefeq 33858 ldgenpisyslem1 34176 ldgenpisys 34179 inelsros 34191 diffiunisros 34192 elcarsg 34318 carsgclctunlem2 34332 carsgclctun 34334 ballotlemfval 34503 ballotlemgval 34537 fineqvomon 35134 cvmscbv 35302 cvmsdisj 35314 cvmsss2 35318 satfv1 35407 nepss 35762 tailfb 36421 bj-0int 37145 mblfinlem2 37708 qsdisjALTV 38721 lshpinN 39098 elrfi 42797 fipjust 43668 conrel1d 43766 ntrk0kbimka 44142 clsk3nimkb 44143 isotone2 44152 ntrclskb 44172 ntrclsk3 44173 ntrclsk13 44174 csbresgVD 44997 wfac8prim 45105 permac8prim 45117 disjf1 45290 qinioo 45645 fouriersw 46339 nnfoctbdjlem 46563 meadjun 46570 caragenel 46603 sepnsepolem2 49033 sepfsepc 49038 iscnrm3rlem8 49057 iscnrm3llem2 49060 |
| Copyright terms: Public domain | W3C validator |