| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4172 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | incom 4168 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4168 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 |
| This theorem is referenced by: ineq12 4174 ineq2i 4176 ineq2d 4179 uneqin 4248 wefrc 5625 onfr 6359 onnseq 8290 qsdisj 8744 disjenex 9076 fiint 9253 fiintOLD 9254 elfiun 9357 dffi3 9358 cplem2 9819 dfac5 10058 kmlem2 10081 kmlem13 10092 kmlem14 10093 ackbij1lem16 10163 fin23lem12 10260 fin23lem19 10265 fin23lem33 10274 uzin2 15287 pgpfac1lem3 19993 pgpfac1lem5 19995 pgpfac1 19996 inopn 22819 basis1 22870 basis2 22871 baspartn 22874 fctop 22924 cctop 22926 ordtbaslem 23108 hausnei2 23273 cnhaus 23274 nrmsep 23277 isnrm2 23278 dishaus 23302 ordthauslem 23303 dfconn2 23339 nconnsubb 23343 finlocfin 23440 dissnlocfin 23449 locfindis 23450 kgeni 23457 pthaus 23558 txhaus 23567 xkohaus 23573 regr1lem 23659 fbasssin 23756 fbun 23760 fbunfip 23789 filconn 23803 isufil2 23828 ufileu 23839 filufint 23840 fmfnfmlem4 23877 fmfnfm 23878 fclsopni 23935 fclsbas 23941 fclsrest 23944 isfcf 23954 tsmsfbas 24048 ustincl 24128 ust0 24140 metreslem 24283 methaus 24441 qtopbaslem 24679 metnrmlem3 24783 ismbl 25460 shincl 31360 chincl 31478 chdmm1 31504 ledi 31519 cmbr 31563 cmbr3i 31579 cmbr3 31587 pjoml2 31590 stcltrlem1 32255 mdbr 32273 dmdbr 32278 cvmd 32315 cvexch 32353 sumdmdii 32394 mddmdin0i 32410 ofpreima2 32640 ssdifidllem 33420 ssdifidl 33421 ssdifidlprm 33422 1arithufdlem4 33511 crefeq 33828 ldgenpisyslem1 34146 ldgenpisys 34149 inelsros 34161 diffiunisros 34162 elcarsg 34289 carsgclctunlem2 34303 carsgclctun 34305 ballotlemfval 34474 ballotlemgval 34508 cvmscbv 35238 cvmsdisj 35250 cvmsss2 35254 satfv1 35343 nepss 35698 tailfb 36358 bj-0int 37082 mblfinlem2 37645 qsdisjALTV 38599 lshpinN 38975 elrfi 42675 fipjust 43547 conrel1d 43645 ntrk0kbimka 44021 clsk3nimkb 44022 isotone2 44031 ntrclskb 44051 ntrclsk3 44052 ntrclsk13 44053 csbresgVD 44877 wfac8prim 44985 permac8prim 44997 disjf1 45170 qinioo 45526 fouriersw 46222 nnfoctbdjlem 46446 meadjun 46453 caragenel 46486 sepnsepolem2 48904 sepfsepc 48909 iscnrm3rlem8 48928 iscnrm3llem2 48931 |
| Copyright terms: Public domain | W3C validator |