![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4101 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | incom 4099 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4099 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2856 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∩ cin 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-in 3866 |
This theorem is referenced by: ineq12 4104 ineq2i 4106 ineq2d 4109 uneqin 4175 intprg 4816 wefrc 5437 onfr 6105 onnseq 7833 qsdisj 8224 disjenex 8522 fiint 8641 elfiun 8740 dffi3 8741 cplem2 9165 dfac5 9400 kmlem2 9423 kmlem13 9434 kmlem14 9435 ackbij1lem16 9503 fin23lem12 9599 fin23lem19 9604 fin23lem33 9613 uzin2 14538 pgpfac1lem3 18916 pgpfac1lem5 18918 pgpfac1 18919 inopn 21191 basis1 21242 basis2 21243 baspartn 21246 fctop 21296 cctop 21298 ordtbaslem 21480 hausnei2 21645 cnhaus 21646 nrmsep 21649 isnrm2 21650 dishaus 21674 ordthauslem 21675 dfconn2 21711 nconnsubb 21715 finlocfin 21812 dissnlocfin 21821 locfindis 21822 kgeni 21829 pthaus 21930 txhaus 21939 xkohaus 21945 regr1lem 22031 fbasssin 22128 fbun 22132 fbunfip 22161 filconn 22175 isufil2 22200 ufileu 22211 filufint 22212 fmfnfmlem4 22249 fmfnfm 22250 fclsopni 22307 fclsbas 22313 fclsrest 22316 isfcf 22326 tsmsfbas 22419 ustincl 22499 ust0 22511 metreslem 22655 methaus 22813 qtopbaslem 23050 metnrmlem3 23152 ismbl 23810 shincl 28849 chincl 28967 chdmm1 28993 ledi 29008 cmbr 29052 cmbr3i 29068 cmbr3 29076 pjoml2 29079 stcltrlem1 29744 mdbr 29762 dmdbr 29767 cvmd 29804 cvexch 29842 sumdmdii 29883 mddmdin0i 29899 ofpreima2 30101 crefeq 30726 ldgenpisyslem1 31039 ldgenpisys 31042 inelsros 31054 diffiunisros 31055 elcarsg 31180 carsgclctunlem2 31194 carsgclctun 31196 ballotlemfval 31364 ballotlemgval 31398 cvmscbv 32113 cvmsdisj 32125 cvmsss2 32129 satfv1 32218 nepss 32556 tailfb 33334 bj-0int 33992 mblfinlem2 34461 qsdisjALTV 35381 lshpinN 35656 elrfi 38776 fipjust 39409 conrel1d 39493 ntrk0kbimka 39874 clsk3nimkb 39875 isotone2 39884 ntrclskb 39904 ntrclsk3 39905 ntrclsk13 39906 csbresgVD 40768 disjf1 40983 qinioo 41353 fouriersw 42058 nnfoctbdjlem 42279 meadjun 42286 caragenel 42319 |
Copyright terms: Public domain | W3C validator |