| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4193 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | incom 4189 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4189 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-in 3938 |
| This theorem is referenced by: ineq12 4195 ineq2i 4197 ineq2d 4200 uneqin 4269 wefrc 5653 onfr 6396 onnseq 8363 qsdisj 8813 disjenex 9154 fiint 9343 fiintOLD 9344 elfiun 9447 dffi3 9448 cplem2 9909 dfac5 10148 kmlem2 10171 kmlem13 10182 kmlem14 10183 ackbij1lem16 10253 fin23lem12 10350 fin23lem19 10355 fin23lem33 10364 uzin2 15368 pgpfac1lem3 20065 pgpfac1lem5 20067 pgpfac1 20068 inopn 22842 basis1 22893 basis2 22894 baspartn 22897 fctop 22947 cctop 22949 ordtbaslem 23131 hausnei2 23296 cnhaus 23297 nrmsep 23300 isnrm2 23301 dishaus 23325 ordthauslem 23326 dfconn2 23362 nconnsubb 23366 finlocfin 23463 dissnlocfin 23472 locfindis 23473 kgeni 23480 pthaus 23581 txhaus 23590 xkohaus 23596 regr1lem 23682 fbasssin 23779 fbun 23783 fbunfip 23812 filconn 23826 isufil2 23851 ufileu 23862 filufint 23863 fmfnfmlem4 23900 fmfnfm 23901 fclsopni 23958 fclsbas 23964 fclsrest 23967 isfcf 23977 tsmsfbas 24071 ustincl 24151 ust0 24163 metreslem 24306 methaus 24464 qtopbaslem 24702 metnrmlem3 24806 ismbl 25484 shincl 31367 chincl 31485 chdmm1 31511 ledi 31526 cmbr 31570 cmbr3i 31586 cmbr3 31594 pjoml2 31597 stcltrlem1 32262 mdbr 32280 dmdbr 32285 cvmd 32322 cvexch 32360 sumdmdii 32401 mddmdin0i 32417 ofpreima2 32649 ssdifidllem 33476 ssdifidl 33477 ssdifidlprm 33478 1arithufdlem4 33567 crefeq 33881 ldgenpisyslem1 34199 ldgenpisys 34202 inelsros 34214 diffiunisros 34215 elcarsg 34342 carsgclctunlem2 34356 carsgclctun 34358 ballotlemfval 34527 ballotlemgval 34561 cvmscbv 35285 cvmsdisj 35297 cvmsss2 35301 satfv1 35390 nepss 35740 tailfb 36400 bj-0int 37124 mblfinlem2 37687 qsdisjALTV 38638 lshpinN 39012 elrfi 42692 fipjust 43564 conrel1d 43662 ntrk0kbimka 44038 clsk3nimkb 44039 isotone2 44048 ntrclskb 44068 ntrclsk3 44069 ntrclsk13 44070 csbresgVD 44894 wfac8prim 45002 permac8prim 45014 disjf1 45187 qinioo 45544 fouriersw 46240 nnfoctbdjlem 46464 meadjun 46471 caragenel 46504 sepnsepolem2 48877 sepfsepc 48882 iscnrm3rlem8 48901 iscnrm3llem2 48904 |
| Copyright terms: Public domain | W3C validator |