Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gg-cnfldfunALT Structured version   Visualization version   GIF version

Theorem gg-cnfldfunALT 35485
Description: The field of complex numbers is a function. Alternate proof of cnfldfun 21157 not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) Revise df-cnfld 21146. (Revised by GG, 31-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
gg-cnfldfunALT Fun ℂfld

Proof of Theorem gg-cnfldfunALT
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basendxnplusgndx 17232 . . . . . . 7 (Base‘ndx) ≠ (+g‘ndx)
2 basendxnmulrndx 17245 . . . . . . 7 (Base‘ndx) ≠ (.r‘ndx)
3 plusgndxnmulrndx 17247 . . . . . . 7 (+g‘ndx) ≠ (.r‘ndx)
4 fvex 6904 . . . . . . . 8 (Base‘ndx) ∈ V
5 fvex 6904 . . . . . . . 8 (+g‘ndx) ∈ V
6 fvex 6904 . . . . . . . 8 (.r‘ndx) ∈ V
7 cnex 11195 . . . . . . . 8 ℂ ∈ V
8 mpoaddex 35473 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) ∈ V
9 mpomulex 35464 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ V
104, 5, 6, 7, 8, 9funtp 6605 . . . . . . 7 (((Base‘ndx) ≠ (+g‘ndx) ∧ (Base‘ndx) ≠ (.r‘ndx) ∧ (+g‘ndx) ≠ (.r‘ndx)) → Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩})
111, 2, 3, 10mp3an 1460 . . . . . 6 Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩}
12 fvex 6904 . . . . . . 7 (*𝑟‘ndx) ∈ V
13 cjf 15056 . . . . . . . 8 ∗:ℂ⟶ℂ
14 fex 7230 . . . . . . . 8 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
1513, 7, 14mp2an 689 . . . . . . 7 ∗ ∈ V
1612, 15funsn 6601 . . . . . 6 Fun {⟨(*𝑟‘ndx), ∗⟩}
1711, 16pm3.2i 470 . . . . 5 (Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩})
187, 8, 9dmtpop 6217 . . . . . . 7 dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} = {(Base‘ndx), (+g‘ndx), (.r‘ndx)}
1915dmsnop 6215 . . . . . . 7 dom {⟨(*𝑟‘ndx), ∗⟩} = {(*𝑟‘ndx)}
2018, 19ineq12i 4210 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)})
21 starvndxnbasendx 17254 . . . . . . . 8 (*𝑟‘ndx) ≠ (Base‘ndx)
2221necomi 2994 . . . . . . 7 (Base‘ndx) ≠ (*𝑟‘ndx)
23 starvndxnplusgndx 17255 . . . . . . . 8 (*𝑟‘ndx) ≠ (+g‘ndx)
2423necomi 2994 . . . . . . 7 (+g‘ndx) ≠ (*𝑟‘ndx)
25 starvndxnmulrndx 17256 . . . . . . . 8 (*𝑟‘ndx) ≠ (.r‘ndx)
2625necomi 2994 . . . . . . 7 (.r‘ndx) ≠ (*𝑟‘ndx)
27 disjtpsn 4719 . . . . . . 7 (((Base‘ndx) ≠ (*𝑟‘ndx) ∧ (+g‘ndx) ≠ (*𝑟‘ndx) ∧ (.r‘ndx) ≠ (*𝑟‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
2822, 24, 26, 27mp3an 1460 . . . . . 6 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
2920, 28eqtri 2759 . . . . 5 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅
30 funun 6594 . . . . 5 (((Fun {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ Fun {⟨(*𝑟‘ndx), ∗⟩}) ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(*𝑟‘ndx), ∗⟩}) = ∅) → Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}))
3117, 29, 30mp2an 689 . . . 4 Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32 slotsdifplendx 17325 . . . . . . . 8 ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx))
3332simpri 485 . . . . . . 7 (TopSet‘ndx) ≠ (le‘ndx)
34 dsndxntsetndx 17343 . . . . . . . 8 (dist‘ndx) ≠ (TopSet‘ndx)
3534necomi 2994 . . . . . . 7 (TopSet‘ndx) ≠ (dist‘ndx)
36 slotsdifdsndx 17344 . . . . . . . 8 ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx))
3736simpri 485 . . . . . . 7 (le‘ndx) ≠ (dist‘ndx)
38 fvex 6904 . . . . . . . 8 (TopSet‘ndx) ∈ V
39 fvex 6904 . . . . . . . 8 (le‘ndx) ∈ V
40 fvex 6904 . . . . . . . 8 (dist‘ndx) ∈ V
41 fvex 6904 . . . . . . . 8 (MetOpen‘(abs ∘ − )) ∈ V
42 letsr 18551 . . . . . . . . 9 ≤ ∈ TosetRel
4342elexi 3493 . . . . . . . 8 ≤ ∈ V
44 absf 15289 . . . . . . . . . 10 abs:ℂ⟶ℝ
45 fex 7230 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4644, 7, 45mp2an 689 . . . . . . . . 9 abs ∈ V
47 subf 11467 . . . . . . . . . 10 − :(ℂ × ℂ)⟶ℂ
487, 7xpex 7744 . . . . . . . . . 10 (ℂ × ℂ) ∈ V
49 fex 7230 . . . . . . . . . 10 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
5047, 48, 49mp2an 689 . . . . . . . . 9 − ∈ V
5146, 50coex 7925 . . . . . . . 8 (abs ∘ − ) ∈ V
5238, 39, 40, 41, 43, 51funtp 6605 . . . . . . 7 (((TopSet‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩})
5333, 35, 37, 52mp3an 1460 . . . . . 6 Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
54 fvex 6904 . . . . . . 7 (UnifSet‘ndx) ∈ V
55 fvex 6904 . . . . . . 7 (metUnif‘(abs ∘ − )) ∈ V
5654, 55funsn 6601 . . . . . 6 Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5753, 56pm3.2i 470 . . . . 5 (Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5841, 43, 51dmtpop 6217 . . . . . . 7 dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} = {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}
5955dmsnop 6215 . . . . . . 7 dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} = {(UnifSet‘ndx)}
6058, 59ineq12i 4210 . . . . . 6 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)})
61 slotsdifunifndx 17351 . . . . . . . 8 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
62 unifndxntsetndx 17350 . . . . . . . . . . . 12 (UnifSet‘ndx) ≠ (TopSet‘ndx)
6362necomi 2994 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (UnifSet‘ndx)
6463a1i 11 . . . . . . . . . 10 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (TopSet‘ndx) ≠ (UnifSet‘ndx))
6564anim1i 614 . . . . . . . . 9 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
66 3anass 1094 . . . . . . . . 9 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) ↔ ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))))
6765, 66sylibr 233 . . . . . . . 8 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
6861, 67ax-mp 5 . . . . . . 7 ((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))
69 disjtpsn 4719 . . . . . . 7 (((TopSet‘ndx) ≠ (UnifSet‘ndx) ∧ (le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
7068, 69ax-mp 5 . . . . . 6 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
7160, 70eqtri 2759 . . . . 5 (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
72 funun 6594 . . . . 5 (((Fun {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ Fun {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ∧ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) → Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7357, 71, 72mp2an 689 . . . 4 Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7431, 73pm3.2i 470 . . 3 (Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
75 dmun 5910 . . . . 5 dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩})
76 dmun 5910 . . . . 5 dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
7775, 76ineq12i 4210 . . . 4 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7818, 58ineq12i 4210 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
79 tsetndxnbasendx 17306 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (Base‘ndx)
8079necomi 2994 . . . . . . . . . . 11 (Base‘ndx) ≠ (TopSet‘ndx)
81 tsetndxnplusgndx 17307 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (+g‘ndx)
8281necomi 2994 . . . . . . . . . . 11 (+g‘ndx) ≠ (TopSet‘ndx)
83 tsetndxnmulrndx 17308 . . . . . . . . . . . 12 (TopSet‘ndx) ≠ (.r‘ndx)
8483necomi 2994 . . . . . . . . . . 11 (.r‘ndx) ≠ (TopSet‘ndx)
8580, 82, 843pm3.2i 1338 . . . . . . . . . 10 ((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx))
86 plendxnbasendx 17320 . . . . . . . . . . . 12 (le‘ndx) ≠ (Base‘ndx)
8786necomi 2994 . . . . . . . . . . 11 (Base‘ndx) ≠ (le‘ndx)
88 plendxnplusgndx 17321 . . . . . . . . . . . 12 (le‘ndx) ≠ (+g‘ndx)
8988necomi 2994 . . . . . . . . . . 11 (+g‘ndx) ≠ (le‘ndx)
90 plendxnmulrndx 17322 . . . . . . . . . . . 12 (le‘ndx) ≠ (.r‘ndx)
9190necomi 2994 . . . . . . . . . . 11 (.r‘ndx) ≠ (le‘ndx)
9287, 89, 913pm3.2i 1338 . . . . . . . . . 10 ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx))
93 dsndxnbasendx 17339 . . . . . . . . . . . 12 (dist‘ndx) ≠ (Base‘ndx)
9493necomi 2994 . . . . . . . . . . 11 (Base‘ndx) ≠ (dist‘ndx)
95 dsndxnplusgndx 17340 . . . . . . . . . . . 12 (dist‘ndx) ≠ (+g‘ndx)
9695necomi 2994 . . . . . . . . . . 11 (+g‘ndx) ≠ (dist‘ndx)
97 dsndxnmulrndx 17341 . . . . . . . . . . . 12 (dist‘ndx) ≠ (.r‘ndx)
9897necomi 2994 . . . . . . . . . . 11 (.r‘ndx) ≠ (dist‘ndx)
9994, 96, 983pm3.2i 1338 . . . . . . . . . 10 ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))
100 disjtp2 4720 . . . . . . . . . 10 ((((Base‘ndx) ≠ (TopSet‘ndx) ∧ (+g‘ndx) ≠ (TopSet‘ndx) ∧ (.r‘ndx) ≠ (TopSet‘ndx)) ∧ ((Base‘ndx) ≠ (le‘ndx) ∧ (+g‘ndx) ≠ (le‘ndx) ∧ (.r‘ndx) ≠ (le‘ndx)) ∧ ((Base‘ndx) ≠ (dist‘ndx) ∧ (+g‘ndx) ≠ (dist‘ndx) ∧ (.r‘ndx) ≠ (dist‘ndx))) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅)
10185, 92, 99, 100mp3an 1460 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
10278, 101eqtri 2759 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
10318, 59ineq12i 4210 . . . . . . . . 9 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)})
104 unifndxnbasendx 17349 . . . . . . . . . . . . . . 15 (UnifSet‘ndx) ≠ (Base‘ndx)
105104necomi 2994 . . . . . . . . . . . . . 14 (Base‘ndx) ≠ (UnifSet‘ndx)
106105a1i 11 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → (Base‘ndx) ≠ (UnifSet‘ndx))
107 3simpa 1147 . . . . . . . . . . . . 13 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
108 3anass 1094 . . . . . . . . . . . . 13 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) ↔ ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))))
109106, 107, 108sylanbrc 582 . . . . . . . . . . . 12 (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
110109adantr 480 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)))
11161, 110ax-mp 5 . . . . . . . . . 10 ((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx))
112 disjtpsn 4719 . . . . . . . . . 10 (((Base‘ndx) ≠ (UnifSet‘ndx) ∧ (+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx)) → ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
113111, 112ax-mp 5 . . . . . . . . 9 ({(Base‘ndx), (+g‘ndx), (.r‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
114103, 113eqtri 2759 . . . . . . . 8 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
115102, 114pm3.2i 470 . . . . . . 7 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
116 undisj2 4462 . . . . . . 7 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
117115, 116mpbi 229 . . . . . 6 (dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
11819, 58ineq12i 4210 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)})
119 tsetndxnstarvndx 17309 . . . . . . . . . . 11 (TopSet‘ndx) ≠ (*𝑟‘ndx)
120 necom 2993 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (le‘ndx) ↔ (le‘ndx) ≠ (*𝑟‘ndx))
121120biimpi 215 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (le‘ndx) → (le‘ndx) ≠ (*𝑟‘ndx))
122121adantr 480 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) → (le‘ndx) ≠ (*𝑟‘ndx))
12332, 122ax-mp 5 . . . . . . . . . . 11 (le‘ndx) ≠ (*𝑟‘ndx)
124 necom 2993 . . . . . . . . . . . . . 14 ((*𝑟‘ndx) ≠ (dist‘ndx) ↔ (dist‘ndx) ≠ (*𝑟‘ndx))
125124biimpi 215 . . . . . . . . . . . . 13 ((*𝑟‘ndx) ≠ (dist‘ndx) → (dist‘ndx) ≠ (*𝑟‘ndx))
126125adantr 480 . . . . . . . . . . . 12 (((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) → (dist‘ndx) ≠ (*𝑟‘ndx))
12736, 126ax-mp 5 . . . . . . . . . . 11 (dist‘ndx) ≠ (*𝑟‘ndx)
128 disjtpsn 4719 . . . . . . . . . . 11 (((TopSet‘ndx) ≠ (*𝑟‘ndx) ∧ (le‘ndx) ≠ (*𝑟‘ndx) ∧ (dist‘ndx) ≠ (*𝑟‘ndx)) → ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅)
129119, 123, 127, 128mp3an 1460 . . . . . . . . . 10 ({(TopSet‘ndx), (le‘ndx), (dist‘ndx)} ∩ {(*𝑟‘ndx)}) = ∅
130129ineqcomi 4203 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(TopSet‘ndx), (le‘ndx), (dist‘ndx)}) = ∅
131118, 130eqtri 2759 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅
13219, 59ineq12i 4210 . . . . . . . . 9 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)})
133 simpl3 1192 . . . . . . . . . . 11 ((((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) → (*𝑟‘ndx) ≠ (UnifSet‘ndx))
13461, 133ax-mp 5 . . . . . . . . . 10 (*𝑟‘ndx) ≠ (UnifSet‘ndx)
135 disjsn2 4716 . . . . . . . . . 10 ((*𝑟‘ndx) ≠ (UnifSet‘ndx) → ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅)
136134, 135ax-mp 5 . . . . . . . . 9 ({(*𝑟‘ndx)} ∩ {(UnifSet‘ndx)}) = ∅
137132, 136eqtri 2759 . . . . . . . 8 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅
138131, 137pm3.2i 470 . . . . . . 7 ((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅)
139 undisj2 4462 . . . . . . 7 (((dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) = ∅) ↔ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
140138, 139mpbi 229 . . . . . 6 (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
141117, 140pm3.2i 470 . . . . 5 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
142 undisj1 4461 . . . . 5 (((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅ ∧ (dom {⟨(*𝑟‘ndx), ∗⟩} ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) ↔ ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅)
143141, 142mpbi 229 . . . 4 ((dom {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ dom {⟨(*𝑟‘ndx), ∗⟩}) ∩ (dom {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ dom {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
14477, 143eqtri 2759 . . 3 (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅
145 funun 6594 . . 3 (((Fun ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∧ Fun ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ∧ (dom ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∩ dom ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) = ∅) → Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
14674, 144, 145mp2an 689 . 2 Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
147 gg-dfcnfld 35474 . . 3 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
148147funeqi 6569 . 2 (Fun ℂfld ↔ Fun (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
149146, 148mpbir 230 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  Vcvv 3473  cun 3946  cin 3947  c0 4322  {csn 4628  {ctp 4632  cop 4634   × cxp 5674  dom cdm 5676  ccom 5680  Fun wfun 6537  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  cc 11112  cr 11113   + caddc 11117   · cmul 11119  cle 11254  cmin 11449  ccj 15048  abscabs 15186  ndxcnx 17131  Basecbs 17149  +gcplusg 17202  .rcmulr 17203  *𝑟cstv 17204  TopSetcts 17208  lecple 17209  distcds 17211  UnifSetcunif 17212   TosetRel ctsr 18523  MetOpencmopn 21135  metUnifcmetu 21136  fldccnfld 21145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-rp 12980  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-mulr 17216  df-starv 17217  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-ps 18524  df-tsr 18525  df-cnfld 21146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator