Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inres2 | Structured version Visualization version GIF version |
Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.) |
Ref | Expression |
---|---|
inres2 | ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inres 5902 | . . 3 ⊢ (𝑆 ∩ (𝑅 ↾ 𝐴)) = ((𝑆 ∩ 𝑅) ↾ 𝐴) | |
2 | 1 | ineqcomi 4137 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
3 | incom 4134 | . . 3 ⊢ (𝑅 ∩ 𝑆) = (𝑆 ∩ 𝑅) | |
4 | 3 | reseq1i 5880 | . 2 ⊢ ((𝑅 ∩ 𝑆) ↾ 𝐴) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
5 | 2, 4 | eqtr4i 2769 | 1 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3885 ↾ cres 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-in 3893 df-res 5596 |
This theorem is referenced by: xrnres 36536 |
Copyright terms: Public domain | W3C validator |