Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inres2 Structured version   Visualization version   GIF version

Theorem inres2 36363
Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.)
Assertion
Ref Expression
inres2 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)

Proof of Theorem inres2
StepHypRef Expression
1 inres 5906 . . 3 (𝑆 ∩ (𝑅𝐴)) = ((𝑆𝑅) ↾ 𝐴)
21ineqcomi 4142 . 2 ((𝑅𝐴) ∩ 𝑆) = ((𝑆𝑅) ↾ 𝐴)
3 incom 4139 . . 3 (𝑅𝑆) = (𝑆𝑅)
43reseq1i 5884 . 2 ((𝑅𝑆) ↾ 𝐴) = ((𝑆𝑅) ↾ 𝐴)
52, 4eqtr4i 2770 1 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cin 3890  cres 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-in 3898  df-res 5600
This theorem is referenced by:  xrnres  36507
  Copyright terms: Public domain W3C validator