Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inres2 Structured version   Visualization version   GIF version

Theorem inres2 38206
Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.)
Assertion
Ref Expression
inres2 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)

Proof of Theorem inres2
StepHypRef Expression
1 inres 5995 . . 3 (𝑆 ∩ (𝑅𝐴)) = ((𝑆𝑅) ↾ 𝐴)
21ineqcomi 4191 . 2 ((𝑅𝐴) ∩ 𝑆) = ((𝑆𝑅) ↾ 𝐴)
3 incom 4189 . . 3 (𝑅𝑆) = (𝑆𝑅)
43reseq1i 5973 . 2 ((𝑅𝑆) ↾ 𝐴) = ((𝑆𝑅) ↾ 𝐴)
52, 4eqtr4i 2760 1 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3930  cres 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-in 3938  df-res 5677
This theorem is referenced by:  xrnres  38362
  Copyright terms: Public domain W3C validator