Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inres2 | Structured version Visualization version GIF version |
Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.) |
Ref | Expression |
---|---|
inres2 | ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inres 5906 | . . 3 ⊢ (𝑆 ∩ (𝑅 ↾ 𝐴)) = ((𝑆 ∩ 𝑅) ↾ 𝐴) | |
2 | 1 | ineqcomi 4142 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
3 | incom 4139 | . . 3 ⊢ (𝑅 ∩ 𝑆) = (𝑆 ∩ 𝑅) | |
4 | 3 | reseq1i 5884 | . 2 ⊢ ((𝑅 ∩ 𝑆) ↾ 𝐴) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
5 | 2, 4 | eqtr4i 2770 | 1 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∩ cin 3890 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-in 3898 df-res 5600 |
This theorem is referenced by: xrnres 36507 |
Copyright terms: Public domain | W3C validator |