| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inres2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.) |
| Ref | Expression |
|---|---|
| inres2 | ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inres 5995 | . . 3 ⊢ (𝑆 ∩ (𝑅 ↾ 𝐴)) = ((𝑆 ∩ 𝑅) ↾ 𝐴) | |
| 2 | 1 | ineqcomi 4191 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
| 3 | incom 4189 | . . 3 ⊢ (𝑅 ∩ 𝑆) = (𝑆 ∩ 𝑅) | |
| 4 | 3 | reseq1i 5973 | . 2 ⊢ ((𝑅 ∩ 𝑆) ↾ 𝐴) = ((𝑆 ∩ 𝑅) ↾ 𝐴) |
| 5 | 2, 4 | eqtr4i 2760 | 1 ⊢ ((𝑅 ↾ 𝐴) ∩ 𝑆) = ((𝑅 ∩ 𝑆) ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∩ cin 3930 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 df-res 5677 |
| This theorem is referenced by: xrnres 38362 |
| Copyright terms: Public domain | W3C validator |