Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inres2 Structured version   Visualization version   GIF version

Theorem inres2 38229
Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.)
Assertion
Ref Expression
inres2 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)

Proof of Theorem inres2
StepHypRef Expression
1 inres 5970 . . 3 (𝑆 ∩ (𝑅𝐴)) = ((𝑆𝑅) ↾ 𝐴)
21ineqcomi 4176 . 2 ((𝑅𝐴) ∩ 𝑆) = ((𝑆𝑅) ↾ 𝐴)
3 incom 4174 . . 3 (𝑅𝑆) = (𝑆𝑅)
43reseq1i 5948 . 2 ((𝑅𝑆) ↾ 𝐴) = ((𝑆𝑅) ↾ 𝐴)
52, 4eqtr4i 2756 1 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3915  cres 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3923  df-res 5652
This theorem is referenced by:  xrnres  38383
  Copyright terms: Public domain W3C validator