Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inres2 Structured version   Visualization version   GIF version

Theorem inres2 37943
Description: Two ways of expressing the restriction of an intersection. (Contributed by Peter Mazsa, 5-Jun-2021.)
Assertion
Ref Expression
inres2 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)

Proof of Theorem inres2
StepHypRef Expression
1 inres 6007 . . 3 (𝑆 ∩ (𝑅𝐴)) = ((𝑆𝑅) ↾ 𝐴)
21ineqcomi 4204 . 2 ((𝑅𝐴) ∩ 𝑆) = ((𝑆𝑅) ↾ 𝐴)
3 incom 4202 . . 3 (𝑅𝑆) = (𝑆𝑅)
43reseq1i 5985 . 2 ((𝑅𝑆) ↾ 𝐴) = ((𝑆𝑅) ↾ 𝐴)
52, 4eqtr4i 2757 1 ((𝑅𝐴) ∩ 𝑆) = ((𝑅𝑆) ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cin 3946  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-in 3954  df-res 5694
This theorem is referenced by:  xrnres  38100
  Copyright terms: Public domain W3C validator