Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvimainrn | Structured version Visualization version GIF version |
Description: The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
cnvimainrn | ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = (◡𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 6991 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = ((◡𝐹 “ ran 𝐹) ∩ (◡𝐹 “ 𝐴))) | |
2 | cnvimass 6013 | . . . . 5 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
3 | cnvimarndm 6014 | . . . . 5 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
4 | 2, 3 | sseqtrri 3968 | . . . 4 ⊢ (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ ran 𝐹) |
5 | df-ss 3914 | . . . 4 ⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ ran 𝐹) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝐴)) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝐴) |
7 | 6 | ineqcomi 4149 | . 2 ⊢ ((◡𝐹 “ ran 𝐹) ∩ (◡𝐹 “ 𝐴)) = (◡𝐹 “ 𝐴) |
8 | 1, 7 | eqtrdi 2792 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = (◡𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∩ cin 3896 ⊆ wss 3897 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 Fun wfun 6467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6475 |
This theorem is referenced by: fcoreslem1 44897 |
Copyright terms: Public domain | W3C validator |