Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvimainrn | Structured version Visualization version GIF version |
Description: The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
cnvimainrn | ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = (◡𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 6923 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = ((◡𝐹 “ ran 𝐹) ∩ (◡𝐹 “ 𝐴))) | |
2 | cnvimass 5978 | . . . . 5 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
3 | cnvimarndm 5979 | . . . . 5 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
4 | 2, 3 | sseqtrri 3954 | . . . 4 ⊢ (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ ran 𝐹) |
5 | df-ss 3900 | . . . 4 ⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ ran 𝐹) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝐴)) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝐴) |
7 | 6 | ineqcomi 4134 | . 2 ⊢ ((◡𝐹 “ ran 𝐹) ∩ (◡𝐹 “ 𝐴)) = (◡𝐹 “ 𝐴) |
8 | 1, 7 | eqtrdi 2795 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = (◡𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 |
This theorem is referenced by: fcoreslem1 44444 |
Copyright terms: Public domain | W3C validator |