MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimainrn Structured version   Visualization version   GIF version

Theorem cnvimainrn 6926
Description: The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.)
Assertion
Ref Expression
cnvimainrn (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))

Proof of Theorem cnvimainrn
StepHypRef Expression
1 inpreima 6923 . 2 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)))
2 cnvimass 5978 . . . . 5 (𝐹𝐴) ⊆ dom 𝐹
3 cnvimarndm 5979 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
42, 3sseqtrri 3954 . . . 4 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
5 df-ss 3900 . . . 4 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
64, 5mpbi 229 . . 3 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
76ineqcomi 4134 . 2 ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)) = (𝐹𝐴)
81, 7eqtrdi 2795 1 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882  wss 3883  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420
This theorem is referenced by:  fcoreslem1  44444
  Copyright terms: Public domain W3C validator