MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimainrn Structured version   Visualization version   GIF version

Theorem cnvimainrn 7000
Description: The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.)
Assertion
Ref Expression
cnvimainrn (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))

Proof of Theorem cnvimainrn
StepHypRef Expression
1 inpreima 6997 . 2 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)))
2 cnvimass 6030 . . . . 5 (𝐹𝐴) ⊆ dom 𝐹
3 cnvimarndm 6031 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
42, 3sseqtrri 3979 . . . 4 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
5 dfss2 3915 . . . 4 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
64, 5mpbi 230 . . 3 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
76ineqcomi 4158 . 2 ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)) = (𝐹𝐴)
81, 7eqtrdi 2782 1 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3896  wss 3897  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483
This theorem is referenced by:  fcoreslem1  47173
  Copyright terms: Public domain W3C validator