MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimainrn Structured version   Visualization version   GIF version

Theorem cnvimainrn 7042
Description: The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.)
Assertion
Ref Expression
cnvimainrn (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))

Proof of Theorem cnvimainrn
StepHypRef Expression
1 inpreima 7039 . 2 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)))
2 cnvimass 6056 . . . . 5 (𝐹𝐴) ⊆ dom 𝐹
3 cnvimarndm 6057 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
42, 3sseqtrri 3999 . . . 4 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
5 dfss2 3935 . . . 4 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
64, 5mpbi 230 . . 3 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
76ineqcomi 4177 . 2 ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)) = (𝐹𝐴)
81, 7eqtrdi 2781 1 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3916  wss 3917  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516
This theorem is referenced by:  fcoreslem1  47068
  Copyright terms: Public domain W3C validator