MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimainrn Structured version   Visualization version   GIF version

Theorem cnvimainrn 7100
Description: The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.)
Assertion
Ref Expression
cnvimainrn (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))

Proof of Theorem cnvimainrn
StepHypRef Expression
1 inpreima 7097 . 2 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)))
2 cnvimass 6111 . . . . 5 (𝐹𝐴) ⊆ dom 𝐹
3 cnvimarndm 6112 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
42, 3sseqtrri 4046 . . . 4 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
5 dfss2 3994 . . . 4 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
64, 5mpbi 230 . . 3 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
76ineqcomi 4232 . 2 ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)) = (𝐹𝐴)
81, 7eqtrdi 2796 1 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575
This theorem is referenced by:  fcoreslem1  46978
  Copyright terms: Public domain W3C validator