MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimainrn Structured version   Visualization version   GIF version

Theorem cnvimainrn 6944
Description: The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.)
Assertion
Ref Expression
cnvimainrn (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))

Proof of Theorem cnvimainrn
StepHypRef Expression
1 inpreima 6941 . 2 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)))
2 cnvimass 5989 . . . . 5 (𝐹𝐴) ⊆ dom 𝐹
3 cnvimarndm 5990 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
42, 3sseqtrri 3958 . . . 4 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
5 df-ss 3904 . . . 4 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
64, 5mpbi 229 . . 3 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
76ineqcomi 4137 . 2 ((𝐹 “ ran 𝐹) ∩ (𝐹𝐴)) = (𝐹𝐴)
81, 7eqtrdi 2794 1 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3886  wss 3887  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435
This theorem is referenced by:  fcoreslem1  44557
  Copyright terms: Public domain W3C validator