MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqri Structured version   Visualization version   GIF version

Theorem ineqri 4151
Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
ineqri.1 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
Assertion
Ref Expression
ineqri (𝐴𝐵) = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem ineqri
StepHypRef Expression
1 elin 3914 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 ineqri.1 . . 3 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
31, 2bitri 274 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐶)
43eqriv 2733 1 (𝐴𝐵) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  cin 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-in 3905
This theorem is referenced by:  inidm  4165  inass  4166  dfin2  4207  indi  4220  inab  4246  in0  4338  pwin  5514  dfres3  5928  dmres  5945  inixp  35999
  Copyright terms: Public domain W3C validator