MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqri Structured version   Visualization version   GIF version

Theorem ineqri 4233
Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
ineqri.1 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
Assertion
Ref Expression
ineqri (𝐴𝐵) = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem ineqri
StepHypRef Expression
1 elin 3992 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 ineqri.1 . . 3 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
31, 2bitri 275 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐶)
43eqriv 2737 1 (𝐴𝐵) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983
This theorem is referenced by:  inidm  4248  inass  4249  dfin2  4290  indi  4303  inab  4328  in0  4418  pwin  5589  dfres3  6014  dmres  6041  inixp  37688
  Copyright terms: Public domain W3C validator