Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineqri | Structured version Visualization version GIF version |
Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
ineqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
Ref | Expression |
---|---|
ineqri | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3882 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | ineqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
3 | 1, 2 | bitri 278 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝐶) |
4 | 3 | eqriv 2734 | 1 ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 |
This theorem is referenced by: inidm 4133 inass 4134 dfin2 4175 indi 4188 inab 4214 in0 4306 pwin 5449 dfres3 5856 dmres 5873 inixp 35623 |
Copyright terms: Public domain | W3C validator |