| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineqri | Structured version Visualization version GIF version | ||
| Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| ineqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| ineqri | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | ineqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| 4 | 3 | eqriv 2728 | 1 ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 |
| This theorem is referenced by: inidm 4174 inass 4175 dfin2 4218 indi 4231 inab 4256 in0 4342 pwin 5505 dfres3 5932 dmres 5960 inixp 37767 |
| Copyright terms: Public domain | W3C validator |