Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iniin1 Structured version   Visualization version   GIF version

Theorem iniin1 44276
Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
iniin1 (𝐴 ≠ ∅ → ( 𝑥𝐴 𝐶𝐵) = 𝑥𝐴 (𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iniin1
StepHypRef Expression
1 iinin1 5082 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
21eqcomd 2737 1 (𝐴 ≠ ∅ → ( 𝑥𝐴 𝐶𝐵) = 𝑥𝐴 (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2939  cin 3947  c0 4322   ciin 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3951  df-in 3955  df-nul 4323  df-iin 5000
This theorem is referenced by:  smfsuplem1  45986
  Copyright terms: Public domain W3C validator