Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iniin1 Structured version   Visualization version   GIF version

Theorem iniin1 45119
Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
iniin1 (𝐴 ≠ ∅ → ( 𝑥𝐴 𝐶𝐵) = 𝑥𝐴 (𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iniin1
StepHypRef Expression
1 iinin1 5043 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
21eqcomd 2735 1 (𝐴 ≠ ∅ → ( 𝑥𝐴 𝐶𝐵) = 𝑥𝐴 (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925  cin 3913  c0 4296   ciin 4956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-in 3921  df-nul 4297  df-iin 4958
This theorem is referenced by:  smfsuplem1  46809
  Copyright terms: Public domain W3C validator