Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iniin1 | Structured version Visualization version GIF version |
Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iniin1 | ⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinin1 5004 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) | |
2 | 1 | eqcomd 2745 | 1 ⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ≠ wne 2943 ∩ cin 3883 ∅c0 4254 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-12 2177 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3425 df-dif 3887 df-in 3891 df-nul 4255 df-iin 4924 |
This theorem is referenced by: smfsuplem1 44204 |
Copyright terms: Public domain | W3C validator |