Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iniin1 | Structured version Visualization version GIF version |
Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iniin1 | ⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinin1 4966 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) | |
2 | 1 | eqcomd 2764 | 1 ⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ≠ wne 2951 ∩ cin 3857 ∅c0 4225 ∩ ciin 4884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-ral 3075 df-rab 3079 df-v 3411 df-dif 3861 df-in 3865 df-nul 4226 df-iin 4886 |
This theorem is referenced by: smfsuplem1 43808 |
Copyright terms: Public domain | W3C validator |