![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinin2 | Structured version Visualization version GIF version |
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4794 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
iinin2 | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 4288 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶))) | |
2 | elin 4023 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
3 | 2 | ralbii 3189 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
4 | vex 3417 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | eliin 4745 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
7 | 6 | anbi2i 618 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
8 | 1, 3, 7 | 3bitr4g 306 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶))) |
9 | eliin 4745 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))) | |
10 | 4, 9 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) |
11 | elin 4023 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
12 | 8, 10, 11 | 3bitr4g 306 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶))) |
13 | 12 | eqrdv 2823 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ∀wral 3117 Vcvv 3414 ∩ cin 3797 ∅c0 4144 ∩ ciin 4741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-v 3416 df-dif 3801 df-in 3805 df-nul 4145 df-iin 4743 |
This theorem is referenced by: iinin1 4811 iniin2 40124 |
Copyright terms: Public domain | W3C validator |