Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inindif Structured version   Visualization version   GIF version

Theorem inindif 30908
Description: See inundif 4418. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
inindif ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅

Proof of Theorem inindif
StepHypRef Expression
1 inss2 4169 . . . 4 (𝐴𝐶) ⊆ 𝐶
21orci 863 . . 3 ((𝐴𝐶) ⊆ 𝐶𝐴𝐶)
3 inss 4178 . . 3 (((𝐴𝐶) ⊆ 𝐶𝐴𝐶) → ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶)
42, 3ax-mp 5 . 2 ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶
5 inssdif0 4309 . 2 (((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅)
64, 5mpbi 229 1 ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅
Colors of variables: wff setvar class
Syntax hints:  wo 845   = wceq 1539  cdif 3889  cin 3891  wss 3892  c0 4262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3287  df-v 3439  df-dif 3895  df-in 3899  df-ss 3909  df-nul 4263
This theorem is referenced by:  resf1o  31110  gsummptres  31357  indsumin  32035  measunl  32229  carsgclctun  32333  probdif  32432  hgt750lemd  32673
  Copyright terms: Public domain W3C validator