MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindif Structured version   Visualization version   GIF version

Theorem inindif 4350
Description: The intersection and class difference of a class with another class are disjoint. With inundif 4454, this shows that such intersection and class difference partition the class 𝐴. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
inindif ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅

Proof of Theorem inindif
StepHypRef Expression
1 inss2 4213 . . 3 (𝐴𝐶) ⊆ 𝐶
2 ssinss1 4221 . . 3 ((𝐴𝐶) ⊆ 𝐶 → ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶)
31, 2ax-mp 5 . 2 ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶
4 inssdif0 4349 . 2 (((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅)
53, 4mpbi 230 1 ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3923  cin 3925  wss 3926  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-in 3933  df-ss 3943  df-nul 4309
This theorem is referenced by:  resf1o  32707  indsumin  32839  gsummptres  33046  measunl  34247  carsgclctun  34353  probdif  34452  hgt750lemd  34680  redvmptabs  42403
  Copyright terms: Public domain W3C validator