Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inindif Structured version   Visualization version   GIF version

Theorem inindif 30842
Description: See inundif 4417. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
inindif ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅

Proof of Theorem inindif
StepHypRef Expression
1 inss2 4168 . . . 4 (𝐴𝐶) ⊆ 𝐶
21orci 861 . . 3 ((𝐴𝐶) ⊆ 𝐶𝐴𝐶)
3 inss 4177 . . 3 (((𝐴𝐶) ⊆ 𝐶𝐴𝐶) → ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶)
42, 3ax-mp 5 . 2 ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶
5 inssdif0 4308 . 2 (((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅)
64, 5mpbi 229 1 ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅
Colors of variables: wff setvar class
Syntax hints:  wo 843   = wceq 1541  cdif 3888  cin 3890  wss 3891  c0 4261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-nul 4262
This theorem is referenced by:  resf1o  31044  gsummptres  31291  indsumin  31969  measunl  32163  carsgclctun  32267  probdif  32366  hgt750lemd  32607
  Copyright terms: Public domain W3C validator