Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inindif | Structured version Visualization version GIF version |
Description: See inundif 4418. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
Ref | Expression |
---|---|
inindif | ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4169 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
2 | 1 | orci 863 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) |
3 | inss 4178 | . . 3 ⊢ (((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) → ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 |
5 | inssdif0 4309 | . 2 ⊢ (((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 = wceq 1539 ∖ cdif 3889 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 |
This theorem is referenced by: resf1o 31110 gsummptres 31357 indsumin 32035 measunl 32229 carsgclctun 32333 probdif 32432 hgt750lemd 32673 |
Copyright terms: Public domain | W3C validator |