| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindif | Structured version Visualization version GIF version | ||
| Description: The intersection and class difference of a class with another class are disjoint. With inundif 4442, this shows that such intersection and class difference partition the class 𝐴. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
| Ref | Expression |
|---|---|
| inindif | ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4201 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
| 2 | ssinss1 4209 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 |
| 4 | inssdif0 4337 | . 2 ⊢ (((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: resf1o 32653 indsumin 32785 gsummptres 32992 measunl 34206 carsgclctun 34312 probdif 34411 hgt750lemd 34639 redvmptabs 42348 |
| Copyright terms: Public domain | W3C validator |