Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inindif Structured version   Visualization version   GIF version

Theorem inindif 32188
Description: See inundif 4478. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
inindif ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅

Proof of Theorem inindif
StepHypRef Expression
1 inss2 4229 . . . 4 (𝐴𝐶) ⊆ 𝐶
21orci 862 . . 3 ((𝐴𝐶) ⊆ 𝐶𝐴𝐶)
3 inss 4238 . . 3 (((𝐴𝐶) ⊆ 𝐶𝐴𝐶) → ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶)
42, 3ax-mp 5 . 2 ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶
5 inssdif0 4369 . 2 (((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅)
64, 5mpbi 229 1 ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1540  cdif 3945  cin 3947  wss 3948  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  resf1o  32389  gsummptres  32641  indsumin  33485  measunl  33679  carsgclctun  33785  probdif  33884  hgt750lemd  34125
  Copyright terms: Public domain W3C validator