MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindif Structured version   Visualization version   GIF version

Theorem inindif 4320
Description: The intersection and class difference of a class with another class are disjoint. With inundif 4424, this shows that such intersection and class difference partition the class 𝐴. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
inindif ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅

Proof of Theorem inindif
StepHypRef Expression
1 inss2 4183 . . 3 (𝐴𝐶) ⊆ 𝐶
2 ssinss1 4191 . . 3 ((𝐴𝐶) ⊆ 𝐶 → ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶)
31, 2ax-mp 5 . 2 ((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶
4 inssdif0 4319 . 2 (((𝐴𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅)
53, 4mpbi 230 1 ((𝐴𝐶) ∩ (𝐴𝐶)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3894  cin 3896  wss 3897  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4279
This theorem is referenced by:  resf1o  32705  indsumin  32835  gsummptres  33024  measunl  34221  carsgclctun  34326  probdif  34425  hgt750lemd  34653  redvmptabs  42393
  Copyright terms: Public domain W3C validator