| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindif | Structured version Visualization version GIF version | ||
| Description: The intersection and class difference of a class with another class are disjoint. With inundif 4454, this shows that such intersection and class difference partition the class 𝐴. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
| Ref | Expression |
|---|---|
| inindif | ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4213 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
| 2 | ssinss1 4221 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 |
| 4 | inssdif0 4349 | . 2 ⊢ (((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: resf1o 32707 indsumin 32839 gsummptres 33046 measunl 34247 carsgclctun 34353 probdif 34452 hgt750lemd 34680 redvmptabs 42403 |
| Copyright terms: Public domain | W3C validator |