![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inindif | Structured version Visualization version GIF version |
Description: See inundif 4269. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
Ref | Expression |
---|---|
inindif | ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4058 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
2 | 1 | orci 896 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) |
3 | inss 4067 | . . 3 ⊢ (((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) → ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 |
5 | inssdif0 4177 | . 2 ⊢ (((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) | |
6 | 4, 5 | mpbi 222 | 1 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 878 = wceq 1656 ∖ cdif 3795 ∩ cin 3797 ⊆ wss 3798 ∅c0 4144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 df-nul 4145 |
This theorem is referenced by: resf1o 30042 gsummptres 30318 indsumin 30618 measunl 30813 carsgclctun 30917 probdif 31017 hgt750lemd 31264 |
Copyright terms: Public domain | W3C validator |