![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inindif | Structured version Visualization version GIF version |
Description: See inundif 4474. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
Ref | Expression |
---|---|
inindif | ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4225 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
2 | 1 | orci 864 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) |
3 | inss 4234 | . . 3 ⊢ (((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) → ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 |
5 | inssdif0 4365 | . 2 ⊢ (((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1534 ∖ cdif 3942 ∩ cin 3944 ⊆ wss 3945 ∅c0 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-in 3952 df-ss 3962 df-nul 4319 |
This theorem is referenced by: resf1o 32506 gsummptres 32760 indsumin 33635 measunl 33829 carsgclctun 33935 probdif 34034 hgt750lemd 34274 |
Copyright terms: Public domain | W3C validator |