Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inindif | Structured version Visualization version GIF version |
Description: See inundif 4417. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
Ref | Expression |
---|---|
inindif | ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4168 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
2 | 1 | orci 861 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) |
3 | inss 4177 | . . 3 ⊢ (((𝐴 ∩ 𝐶) ⊆ 𝐶 ∨ 𝐴 ⊆ 𝐶) → ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 |
5 | inssdif0 4308 | . 2 ⊢ (((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1541 ∖ cdif 3888 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 |
This theorem is referenced by: resf1o 31044 gsummptres 31291 indsumin 31969 measunl 32163 carsgclctun 32267 probdif 32366 hgt750lemd 32607 |
Copyright terms: Public domain | W3C validator |