| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindif | Structured version Visualization version GIF version | ||
| Description: The intersection and class difference of a class with another class are disjoint. With inundif 4428, this shows that such intersection and class difference partition the class 𝐴. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
| Ref | Expression |
|---|---|
| inindif | ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4187 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
| 2 | ssinss1 4195 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 |
| 4 | inssdif0 4323 | . 2 ⊢ (((𝐴 ∩ 𝐶) ∩ 𝐴) ⊆ 𝐶 ↔ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: resf1o 32737 indsumin 32871 gsummptres 33063 measunl 34301 carsgclctun 34406 probdif 34505 hgt750lemd 34733 redvmptabs 42530 |
| Copyright terms: Public domain | W3C validator |