Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > measinb2 | Structured version Visualization version GIF version |
Description: Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
measinb2 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmpt3 5948 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) = (𝑥 ∈ (𝑆 ∩ (𝑆 ∩ 𝒫 𝐴)) ↦ (𝑀‘(𝑥 ∩ 𝐴))) | |
2 | inin 30859 | . . . 4 ⊢ (𝑆 ∩ (𝑆 ∩ 𝒫 𝐴)) = (𝑆 ∩ 𝒫 𝐴) | |
3 | eqid 2738 | . . . 4 ⊢ (𝑀‘(𝑥 ∩ 𝐴)) = (𝑀‘(𝑥 ∩ 𝐴)) | |
4 | 2, 3 | mpteq12i 5182 | . . 3 ⊢ (𝑥 ∈ (𝑆 ∩ (𝑆 ∩ 𝒫 𝐴)) ↦ (𝑀‘(𝑥 ∩ 𝐴))) = (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) |
5 | 1, 4 | eqtri 2766 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) = (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) |
6 | measinb 32186 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆)) | |
7 | measbase 32162 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
8 | sigainb 32101 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴)) | |
9 | elrnsiga 32091 | . . . . 5 ⊢ ((𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴) → (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra) |
11 | 7, 10 | sylan 580 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra) |
12 | inss1 4164 | . . . 4 ⊢ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆 | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) |
14 | measres 32187 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆) ∧ (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) | |
15 | 6, 11, 13, 14 | syl3anc 1370 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) |
16 | 5, 15 | eqeltrrid 2844 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∩ cin 3887 ⊆ wss 3888 𝒫 cpw 4535 ∪ cuni 4841 ↦ cmpt 5159 ran crn 5592 ↾ cres 5593 ‘cfv 6435 sigAlgebracsiga 32073 measurescmeas 32160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-inf2 9397 ax-ac2 10217 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-pre-sup 10947 ax-addf 10948 ax-mulf 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-disj 5042 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-isom 6444 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7976 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-2o 8296 df-er 8496 df-map 8615 df-pm 8616 df-ixp 8684 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-fsupp 9127 df-fi 9168 df-sup 9199 df-inf 9200 df-oi 9267 df-dju 9657 df-card 9695 df-acn 9698 df-ac 9870 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12436 df-uz 12581 df-q 12687 df-rp 12729 df-xneg 12846 df-xadd 12847 df-xmul 12848 df-ioo 13081 df-ioc 13082 df-ico 13083 df-icc 13084 df-fz 13238 df-fzo 13381 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-fac 13986 df-bc 14015 df-hash 14043 df-shft 14776 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-ef 15775 df-sin 15777 df-cos 15778 df-pi 15780 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-ordt 17210 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-ps 18282 df-tsr 18283 df-plusf 18323 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-grp 18578 df-minusg 18579 df-sbg 18580 df-mulg 18699 df-subg 18750 df-cntz 18921 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-subrg 20020 df-abv 20075 df-lmod 20123 df-scaf 20124 df-sra 20432 df-rgmod 20433 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-lp 22285 df-perf 22286 df-cn 22376 df-cnp 22377 df-haus 22464 df-tx 22711 df-hmeo 22904 df-fil 22995 df-fm 23087 df-flim 23088 df-flf 23089 df-tmd 23221 df-tgp 23222 df-tsms 23276 df-trg 23309 df-xms 23471 df-ms 23472 df-tms 23473 df-nm 23736 df-ngp 23737 df-nrg 23739 df-nlm 23740 df-ii 24038 df-cncf 24039 df-limc 25028 df-dv 25029 df-log 25710 df-esum 31993 df-siga 32074 df-meas 32161 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |