| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measinb2 | Structured version Visualization version GIF version | ||
| Description: Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| measinb2 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmpt3 5983 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) = (𝑥 ∈ (𝑆 ∩ (𝑆 ∩ 𝒫 𝐴)) ↦ (𝑀‘(𝑥 ∩ 𝐴))) | |
| 2 | inin 32448 | . . . 4 ⊢ (𝑆 ∩ (𝑆 ∩ 𝒫 𝐴)) = (𝑆 ∩ 𝒫 𝐴) | |
| 3 | eqid 2729 | . . . 4 ⊢ (𝑀‘(𝑥 ∩ 𝐴)) = (𝑀‘(𝑥 ∩ 𝐴)) | |
| 4 | 2, 3 | mpteq12i 5185 | . . 3 ⊢ (𝑥 ∈ (𝑆 ∩ (𝑆 ∩ 𝒫 𝐴)) ↦ (𝑀‘(𝑥 ∩ 𝐴))) = (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) |
| 5 | 1, 4 | eqtri 2752 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) = (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) |
| 6 | measinb 34202 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆)) | |
| 7 | measbase 34178 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 8 | sigainb 34117 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴)) | |
| 9 | elrnsiga 34107 | . . . . 5 ⊢ ((𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴) → (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra) |
| 11 | 7, 10 | sylan 580 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra) |
| 12 | inss1 4184 | . . . 4 ⊢ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆 | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) |
| 14 | measres 34203 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆) ∧ (𝑆 ∩ 𝒫 𝐴) ∈ ∪ ran sigAlgebra ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) | |
| 15 | 6, 11, 13, 14 | syl3anc 1373 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ↾ (𝑆 ∩ 𝒫 𝐴)) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) |
| 16 | 5, 15 | eqeltrrid 2833 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3898 ⊆ wss 3899 𝒫 cpw 4547 ∪ cuni 4856 ↦ cmpt 5169 ran crn 5614 ↾ cres 5615 ‘cfv 6476 sigAlgebracsiga 34089 measurescmeas 34176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-inf2 9525 ax-ac2 10345 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 ax-pre-sup 11075 ax-addf 11076 ax-mulf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-iin 4941 df-disj 5056 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-of 7604 df-om 7791 df-1st 7915 df-2nd 7916 df-supp 8085 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8616 df-map 8746 df-pm 8747 df-ixp 8816 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-fsupp 9240 df-fi 9289 df-sup 9320 df-inf 9321 df-oi 9390 df-dju 9785 df-card 9823 df-acn 9826 df-ac 9998 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-div 11766 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-9 12186 df-n0 12373 df-z 12460 df-dec 12580 df-uz 12724 df-q 12838 df-rp 12882 df-xneg 13002 df-xadd 13003 df-xmul 13004 df-ioo 13240 df-ioc 13241 df-ico 13242 df-icc 13243 df-fz 13399 df-fzo 13546 df-fl 13684 df-mod 13762 df-seq 13897 df-exp 13957 df-fac 14169 df-bc 14198 df-hash 14226 df-shft 14961 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 df-limsup 15365 df-clim 15382 df-rlim 15383 df-sum 15581 df-ef 15961 df-sin 15963 df-cos 15964 df-pi 15966 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-starv 17163 df-sca 17164 df-vsca 17165 df-ip 17166 df-tset 17167 df-ple 17168 df-ds 17170 df-unif 17171 df-hom 17172 df-cco 17173 df-rest 17313 df-topn 17314 df-0g 17332 df-gsum 17333 df-topgen 17334 df-pt 17335 df-prds 17338 df-ordt 17392 df-xrs 17393 df-qtop 17398 df-imas 17399 df-xps 17401 df-mre 17475 df-mrc 17476 df-acs 17478 df-ps 18459 df-tsr 18460 df-plusf 18500 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-mhm 18644 df-submnd 18645 df-grp 18802 df-minusg 18803 df-sbg 18804 df-mulg 18934 df-subg 18989 df-cntz 19183 df-cmn 19648 df-abl 19649 df-mgp 20013 df-rng 20025 df-ur 20054 df-ring 20107 df-cring 20108 df-subrng 20415 df-subrg 20439 df-abv 20678 df-lmod 20749 df-scaf 20750 df-sra 21061 df-rgmod 21062 df-psmet 21237 df-xmet 21238 df-met 21239 df-bl 21240 df-mopn 21241 df-fbas 21242 df-fg 21243 df-cnfld 21246 df-top 22763 df-topon 22780 df-topsp 22802 df-bases 22815 df-cld 22888 df-ntr 22889 df-cls 22890 df-nei 22967 df-lp 23005 df-perf 23006 df-cn 23096 df-cnp 23097 df-haus 23184 df-tx 23431 df-hmeo 23624 df-fil 23715 df-fm 23807 df-flim 23808 df-flf 23809 df-tmd 23941 df-tgp 23942 df-tsms 23996 df-trg 24029 df-xms 24189 df-ms 24190 df-tms 24191 df-nm 24451 df-ngp 24452 df-nrg 24454 df-nlm 24455 df-ii 24751 df-cncf 24752 df-limc 25748 df-dv 25749 df-log 26446 df-esum 34009 df-siga 34090 df-meas 34177 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |