|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressucdifsn | Structured version Visualization version GIF version | ||
| Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class. (Contributed by Peter Mazsa, 20-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| ressucdifsn | ⊢ ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-suc 6390 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | reseq2i 5994 | . . 3 ⊢ (𝑅 ↾ suc 𝐴) = (𝑅 ↾ (𝐴 ∪ {𝐴})) | 
| 3 | 2 | difeq1i 4122 | . 2 ⊢ ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) | 
| 4 | ressucdifsn2 38245 | . 2 ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | |
| 5 | 3, 4 | eqtri 2765 | 1 ⊢ ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∖ cdif 3948 ∪ cun 3949 {csn 4626 ↾ cres 5687 suc csuc 6386 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-reg 9632 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-xp 5691 df-rel 5692 df-res 5697 df-suc 6390 | 
| This theorem is referenced by: partsuc 38781 | 
| Copyright terms: Public domain | W3C validator |