Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressucdifsn Structured version   Visualization version   GIF version

Theorem ressucdifsn 36452
Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class. (Contributed by Peter Mazsa, 20-Sep-2024.)
Assertion
Ref Expression
ressucdifsn ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)

Proof of Theorem ressucdifsn
StepHypRef Expression
1 df-suc 6287 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21reseq2i 5900 . . 3 (𝑅 ↾ suc 𝐴) = (𝑅 ↾ (𝐴 ∪ {𝐴}))
32difeq1i 4059 . 2 ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴}))
4 ressucdifsn2 36451 . 2 ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
53, 4eqtri 2764 1 ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3889  cun 3890  {csn 4565  cres 5602  suc csuc 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-reg 9399
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-opab 5144  df-xp 5606  df-rel 5607  df-res 5612  df-suc 6287
This theorem is referenced by:  partsuc  36994
  Copyright terms: Public domain W3C validator