Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressucdifsn Structured version   Visualization version   GIF version

Theorem ressucdifsn 37637
Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class. (Contributed by Peter Mazsa, 20-Sep-2024.)
Assertion
Ref Expression
ressucdifsn ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)

Proof of Theorem ressucdifsn
StepHypRef Expression
1 df-suc 6369 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21reseq2i 5976 . . 3 (𝑅 ↾ suc 𝐴) = (𝑅 ↾ (𝐴 ∪ {𝐴}))
32difeq1i 4114 . 2 ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴}))
4 ressucdifsn2 37636 . 2 ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
53, 4eqtri 2755 1 ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cdif 3941  cun 3942  {csn 4624  cres 5674  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-reg 9601
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-opab 5205  df-xp 5678  df-rel 5679  df-res 5684  df-suc 6369
This theorem is referenced by:  partsuc  38176
  Copyright terms: Public domain W3C validator