Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inres | Structured version Visualization version GIF version |
Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
inres | ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4126 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5540 | . 2 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 5540 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 3 | ineq2i 4116 | . 2 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) |
5 | 1, 2, 4 | 3eqtr4ri 2792 | 1 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 Vcvv 3409 ∩ cin 3859 × cxp 5526 ↾ cres 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-in 3867 df-res 5540 |
This theorem is referenced by: resindm 5877 fninfp 6933 symgcom2 30891 inres2 35980 xrnres2 36125 br1cossinres 36161 |
Copyright terms: Public domain | W3C validator |