![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inres | Structured version Visualization version GIF version |
Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
inres | ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4219 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5688 | . 2 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 5688 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 3 | ineq2i 4209 | . 2 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) |
5 | 1, 2, 4 | 3eqtr4ri 2770 | 1 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3473 ∩ cin 3947 × cxp 5674 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-in 3955 df-res 5688 |
This theorem is referenced by: resindm 6030 fninfp 7174 symgcom2 32681 inres2 37576 xrnres2 37737 br1cossinres 37781 |
Copyright terms: Public domain | W3C validator |