| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inres | Structured version Visualization version GIF version | ||
| Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.) |
| Ref | Expression |
|---|---|
| inres | ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4193 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5652 | . 2 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 5652 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 3 | ineq2i 4182 | . 2 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) |
| 5 | 1, 2, 4 | 3eqtr4ri 2764 | 1 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∩ cin 3915 × cxp 5638 ↾ cres 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3923 df-res 5652 |
| This theorem is referenced by: resindm 6003 fninfp 7150 symgcom2 33047 inres2 38229 xrnres2 38384 br1cossinres 38433 |
| Copyright terms: Public domain | W3C validator |