MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inres Structured version   Visualization version   GIF version

Theorem inres 5945
Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
inres (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ↾ 𝐶)

Proof of Theorem inres
StepHypRef Expression
1 inass 4175 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V)))
2 df-res 5626 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5626 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
43ineq2i 4164 . 2 (𝐴 ∩ (𝐵𝐶)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V)))
51, 2, 43eqtr4ri 2765 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ↾ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cin 3896   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-res 5626
This theorem is referenced by:  resindm  5978  fninfp  7108  symgcom2  33053  inres2  38288  xrnres2  38443  br1cossinres  38492
  Copyright terms: Public domain W3C validator