MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inres Structured version   Visualization version   GIF version

Theorem inres 5957
Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
inres (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ↾ 𝐶)

Proof of Theorem inres
StepHypRef Expression
1 inass 4187 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V)))
2 df-res 5643 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5643 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
43ineq2i 4176 . 2 (𝐴 ∩ (𝐵𝐶)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V)))
51, 2, 43eqtr4ri 2763 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ↾ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3444  cin 3910   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-in 3918  df-res 5643
This theorem is referenced by:  resindm  5990  fninfp  7130  symgcom2  33014  inres2  38207  xrnres2  38362  br1cossinres  38411
  Copyright terms: Public domain W3C validator