| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > insucid | Structured version Visualization version GIF version | ||
| Description: The intersection of a class and its successor is itself. (Contributed by RP, 3-Jan-2025.) |
| Ref | Expression |
|---|---|
| insucid | ⊢ (𝐴 ∩ suc 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 6388 | . 2 ⊢ 𝐴 ⊆ suc 𝐴 | |
| 2 | dfss2 3920 | . 2 ⊢ (𝐴 ⊆ suc 𝐴 ↔ (𝐴 ∩ suc 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝐴 ∩ suc 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3901 ⊆ wss 3902 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-in 3909 df-ss 3919 df-suc 6312 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |