Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  insucid Structured version   Visualization version   GIF version

Theorem insucid 42975
Description: The intersection of a class and its successor is itself. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
insucid (𝐴 ∩ suc 𝐴) = 𝐴

Proof of Theorem insucid
StepHypRef Expression
1 sssucid 6451 . 2 𝐴 ⊆ suc 𝐴
2 dfss2 3962 . 2 (𝐴 ⊆ suc 𝐴 ↔ (𝐴 ∩ suc 𝐴) = 𝐴)
31, 2mpbi 229 1 (𝐴 ∩ suc 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cin 3943  wss 3944  suc csuc 6373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-un 3949  df-in 3951  df-ss 3961  df-suc 6377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator