![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > insucid | Structured version Visualization version GIF version |
Description: The intersection of a class and its successor is itself. (Contributed by RP, 3-Jan-2025.) |
Ref | Expression |
---|---|
insucid | ⊢ (𝐴 ∩ suc 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid 6451 | . 2 ⊢ 𝐴 ⊆ suc 𝐴 | |
2 | dfss2 3962 | . 2 ⊢ (𝐴 ⊆ suc 𝐴 ↔ (𝐴 ∩ suc 𝐴) = 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝐴 ∩ suc 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∩ cin 3943 ⊆ wss 3944 suc csuc 6373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-un 3949 df-in 3951 df-ss 3961 df-suc 6377 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |