![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > insucid | Structured version Visualization version GIF version |
Description: The intersection of a class and its successor is itself. (Contributed by RP, 3-Jan-2025.) |
Ref | Expression |
---|---|
insucid | ⊢ (𝐴 ∩ suc 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid 6475 | . 2 ⊢ 𝐴 ⊆ suc 𝐴 | |
2 | dfss2 3994 | . 2 ⊢ (𝐴 ⊆ suc 𝐴 ↔ (𝐴 ∩ suc 𝐴) = 𝐴) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ (𝐴 ∩ suc 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 ⊆ wss 3976 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-suc 6401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |