| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordsssucim | Structured version Visualization version GIF version | ||
| Description: If an ordinal is less than or equal to the successor of another, then the first is either less than or equal to the second or the first is equal to the successor of the second. Theorem 1 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 See also ordsssucb 43331 for a biimplication when 𝐴 is a set. (Contributed by RP, 3-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordsssucim | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7791 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
| 2 | ordsseleq 6364 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵))) | |
| 3 | 1, 2 | sylan2b 594 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 4 | simpr 484 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵) | |
| 5 | ordtr 6349 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 6 | trsucss 6425 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 8 | 7 | orim1d 967 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 9 | 3, 8 | sylbid 240 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 Tr wtr 5217 Ord word 6334 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |