| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordsssucim | Structured version Visualization version GIF version | ||
| Description: If an ordinal is less than or equal to the successor of another, then the first is either less than or equal to the second or the first is equal to the successor of the second. Theorem 1 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 See also ordsssucb 43306 for a biimplication when 𝐴 is a set. (Contributed by RP, 3-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordsssucim | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7805 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
| 2 | ordsseleq 6381 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵))) | |
| 3 | 1, 2 | sylan2b 594 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 4 | simpr 484 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵) | |
| 5 | ordtr 6366 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 6 | trsucss 6441 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 8 | 7 | orim1d 967 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 9 | 3, 8 | sylbid 240 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 Tr wtr 5229 Ord word 6351 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-suc 6358 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |