| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordsssucim | Structured version Visualization version GIF version | ||
| Description: If an ordinal is less than or equal to the successor of another, then the first is either less than or equal to the second or the first is equal to the successor of the second. Theorem 1 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 See also ordsssucb 43317 for a biimplication when 𝐴 is a set. (Contributed by RP, 3-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordsssucim | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7768 | . . 3 ⊢ (Ord 𝐵 ↔ Ord suc 𝐵) | |
| 2 | ordsseleq 6349 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵))) | |
| 3 | 1, 2 | sylan2b 594 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 4 | simpr 484 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵) | |
| 5 | ordtr 6334 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 6 | trsucss 6410 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 8 | 7 | orim1d 967 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ suc 𝐵 ∨ 𝐴 = suc 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 9 | 3, 8 | sylbid 240 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 Tr wtr 5209 Ord word 6319 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-suc 6326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |