Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordsssucim Structured version   Visualization version   GIF version

Theorem ordsssucim 43373
Description: If an ordinal is less than or equal to the successor of another, then the first is either less than or equal to the second or the first is equal to the successor of the second. Theorem 1 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 See also ordsssucb 43306 for a biimplication when 𝐴 is a set. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
ordsssucim ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴𝐵𝐴 = suc 𝐵)))

Proof of Theorem ordsssucim
StepHypRef Expression
1 ordsuc 7805 . . 3 (Ord 𝐵 ↔ Ord suc 𝐵)
2 ordsseleq 6381 . . 3 ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵𝐴 = suc 𝐵)))
31, 2sylan2b 594 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵𝐴 = suc 𝐵)))
4 simpr 484 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵)
5 ordtr 6366 . . . 4 (Ord 𝐵 → Tr 𝐵)
6 trsucss 6441 . . . 4 (Tr 𝐵 → (𝐴 ∈ suc 𝐵𝐴𝐵))
74, 5, 63syl 18 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵𝐴𝐵))
87orim1d 967 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ suc 𝐵𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = suc 𝐵)))
93, 8sylbid 240 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴𝐵𝐴 = suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wss 3926  Tr wtr 5229  Ord word 6351  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator