Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordsssucim Structured version   Visualization version   GIF version

Theorem ordsssucim 43364
Description: If an ordinal is less than or equal to the successor of another, then the first is either less than or equal to the second or the first is equal to the successor of the second. Theorem 1 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 See also ordsssucb 43297 for a biimplication when 𝐴 is a set. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
ordsssucim ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴𝐵𝐴 = suc 𝐵)))

Proof of Theorem ordsssucim
StepHypRef Expression
1 ordsuc 7849 . . 3 (Ord 𝐵 ↔ Ord suc 𝐵)
2 ordsseleq 6424 . . 3 ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵𝐴 = suc 𝐵)))
31, 2sylan2b 593 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ∈ suc 𝐵𝐴 = suc 𝐵)))
4 simpr 484 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵)
5 ordtr 6409 . . . 4 (Ord 𝐵 → Tr 𝐵)
6 trsucss 6483 . . . 4 (Tr 𝐵 → (𝐴 ∈ suc 𝐵𝐴𝐵))
74, 5, 63syl 18 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵𝐴𝐵))
87orim1d 966 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ suc 𝐵𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = suc 𝐵)))
93, 8sylbid 240 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴𝐵𝐴 = suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wss 3976  Tr wtr 5283  Ord word 6394  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator