MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6276
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8370). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6345), so that the successor of any ordinal class is still an ordinal class (ordsuc 7670), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6272 . 2 class suc 𝐴
31csn 4562 . . 3 class {𝐴}
41, 3cun 3886 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1539 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceq  6335  elsuci  6336  elsucg  6337  elsuc2g  6338  nfsuc  6341  suc0  6344  sucprc  6345  unisuc  6346  sssucid  6347  iunsuc  6352  orddif  6363  sucexb  7663  sucexeloni  7667  suceloniOLD  7669  onuninsuci  7696  omsucne  7740  tfrlem10  8227  tfrlem16  8233  df2o3  8314  oarec  8402  enrefnn  8846  enpr2d  8847  sucdom2OLD  8878  limensuci  8949  infensuc  8951  pssnn  8960  unfi  8964  sucdom2  8998  phplem1OLD  9009  sucxpdom  9041  isinf  9045  pssnnOLD  9049  dif1enALT  9059  fiint  9100  pwfiOLD  9123  dffi3  9199  sucprcreg  9369  cantnfp1lem3  9447  ranksuc  9632  pm54.43  9768  dif1card  9775  fseqenlem1  9789  dju1en  9936  ackbij1lem1  9985  ackbij1lem2  9986  ackbij1lem5  9989  ackbij1lem14  9998  cfsuc  10022  fin23lem26  10090  axdc3lem4  10218  unsnen  10318  wunsuc  10482  fzennn  13697  hashp1i  14127  bnj927  32758  bnj98  32856  bnj543  32882  bnj970  32936  eqfunressuc  33745  dfon2lem3  33770  dfon2lem7  33774  on2recsov  33836  noextend  33878  nosupbday  33917  nosupbnd1  33926  nosupbnd2lem1  33927  nosupbnd2  33928  noinfbday  33932  noinfbnd1  33941  noinfbnd2lem1  33942  noinfbnd2  33943  madeoldsuc  34076  brsuccf  34252  onsucsuccmpi  34641  onint1  34647  pwfi2f1o  40928  nlimsuc  41055  oa1un  41060  df3o2  41641  df3o3  41642  grusucd  41855  sucidALTVD  42497  sucidALT  42498  sucidVD  42499
  Copyright terms: Public domain W3C validator