MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6358
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8541). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6429), so that the successor of any ordinal class is still an ordinal class (ordsuc 7805), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6354 . 2 class suc 𝐴
31csn 4601 . . 3 class {𝐴}
41, 3cun 3924 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1540 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceq  6419  elsuci  6420  elsucg  6421  elsuc2g  6422  nfsuc  6425  suc0  6428  sucprc  6429  unisucs  6430  sssucid  6433  iunsuc  6438  orddif  6449  eqfunressuc  7353  sucexb  7796  ordsuci  7800  sucexeloniOLD  7802  suceloniOLD  7804  onuninsuci  7833  omsucne  7878  tfrlem10  8399  tfrlem16  8405  df2o3  8486  oarec  8572  on2recsov  8678  naddsuc2  8711  enrefnn  9059  enpr2dOLD  9062  sucdom2OLD  9094  limensuci  9165  infensuc  9167  pssnn  9180  unfi  9183  sucdom2  9215  phplem1OLD  9226  sucxpdom  9261  isinf  9266  isinfOLD  9267  dif1ennnALT  9281  fiint  9336  fiintOLD  9337  dffi3  9441  sucprcreg  9613  cantnfp1lem3  9692  ranksuc  9877  pm54.43  10013  dif1card  10022  fseqenlem1  10036  dju1en  10184  ackbij1lem1  10231  ackbij1lem2  10232  ackbij1lem5  10235  ackbij1lem14  10244  cfsuc  10269  fin23lem26  10337  axdc3lem4  10465  unsnen  10565  wunsuc  10729  fzennn  13984  hashp1i  14419  noextend  27628  nosupbday  27667  nosupbnd1  27676  nosupbnd2lem1  27677  nosupbnd2  27678  noinfbday  27682  noinfbnd1  27691  noinfbnd2lem1  27692  noinfbnd2  27693  madeoldsuc  27840  bnj927  34746  bnj98  34844  bnj543  34870  bnj970  34924  dfon2lem3  35749  dfon2lem7  35753  brsuccf  35905  onsucsuccmpi  36407  onint1  36413  sucdifsn  38203  ressucdifsn  38209  disjsuc  38723  pwfi2f1o  43067  df3o2  43284  df3o3  43285  omcl3g  43305  oa1un  43417  grusucd  44202  sucidALTVD  44842  sucidALT  44843  sucidVD  44844
  Copyright terms: Public domain W3C validator