MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6338
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8495). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6410), so that the successor of any ordinal class is still an ordinal class (ordsuc 7788), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6334 . 2 class suc 𝐴
31csn 4589 . . 3 class {𝐴}
41, 3cun 3912 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1540 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceqd  6399  elsuci  6401  elsucg  6402  elsuc2g  6403  nfsuc  6406  suc0  6409  sucprc  6410  unisucs  6411  sssucid  6414  iunsuc  6419  orddif  6430  eqfunressuc  7336  sucexb  7780  ordsuci  7784  sucexeloniOLD  7786  onuninsuci  7816  omsucne  7861  tfrlem10  8355  tfrlem16  8361  df2o3  8442  oarec  8526  on2recsov  8632  naddsuc2  8665  enrefnn  9018  enpr2dOLD  9021  limensuci  9117  infensuc  9119  pssnn  9132  unfi  9135  sucdom2  9167  sucxpdom  9202  isinf  9207  isinfOLD  9208  dif1ennnALT  9222  fiint  9277  fiintOLD  9278  dffi3  9382  sucprcreg  9554  cantnfp1lem3  9633  ranksuc  9818  pm54.43  9954  dif1card  9963  fseqenlem1  9977  dju1en  10125  ackbij1lem1  10172  ackbij1lem2  10173  ackbij1lem5  10176  ackbij1lem14  10185  cfsuc  10210  fin23lem26  10278  axdc3lem4  10406  unsnen  10506  wunsuc  10670  fzennn  13933  hashp1i  14368  noextend  27578  nosupbday  27617  nosupbnd1  27626  nosupbnd2lem1  27627  nosupbnd2  27628  noinfbday  27632  noinfbnd1  27641  noinfbnd2lem1  27642  noinfbnd2  27643  madeoldsuc  27796  bdayn0p1  28258  bnj927  34759  bnj98  34857  bnj543  34883  bnj970  34937  dfon2lem3  35773  dfon2lem7  35777  brsuccf  35929  onsucsuccmpi  36431  onint1  36437  sucdifsn  38227  ressucdifsn  38233  disjsuc  38751  pwfi2f1o  43085  df3o2  43302  df3o3  43303  omcl3g  43323  oa1un  43435  grusucd  44219  sucidALTVD  44859  sucidALT  44860  sucidVD  44861
  Copyright terms: Public domain W3C validator