MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6077
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8012). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6146), so that the successor of any ordinal class is still an ordinal class (ordsuc 7390), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6073 . 2 class suc 𝐴
31csn 4476 . . 3 class {𝐴}
41, 3cun 3861 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1522 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceq  6136  elsuci  6137  elsucg  6138  elsuc2g  6139  nfsuc  6142  suc0  6145  sucprc  6146  unisuc  6147  sssucid  6148  iunsuc  6153  orddif  6164  sucexb  7385  suceloni  7389  onuninsuci  7416  omsucne  7459  tfrlem10  7880  tfrlem16  7886  df2o3  7973  oarec  8043  limensuci  8545  infensuc  8547  phplem1  8548  sucdom2  8565  sucxpdom  8578  isinf  8582  pssnn  8587  dif1en  8602  fiint  8646  pwfi  8670  dffi3  8746  sucprcreg  8916  cantnfp1lem3  8994  ranksuc  9145  pm54.43  9280  dif1card  9287  fseqenlem1  9301  dju1en  9448  ackbij1lem1  9493  ackbij1lem2  9494  ackbij1lem5  9497  ackbij1lem14  9506  cfsuc  9530  fin23lem26  9598  axdc3lem4  9726  unsnen  9826  wunsuc  9990  fzennn  13191  hashp1i  13617  bnj927  31662  bnj98  31760  bnj543  31786  bnj970  31840  eqfunressuc  32619  dfon2lem3  32644  dfon2lem7  32648  noextend  32788  nosupbday  32820  nosupbnd1  32829  nosupbnd2lem1  32830  nosupbnd2  32831  brsuccf  33017  onsucsuccmpi  33406  onint1  33412  pwfi2f1o  39206  df3o2  39884  df3o3  39885  enpr2d  40076  grusucd  40088  sucidALTVD  40768  sucidALT  40769  sucidVD  40770
  Copyright terms: Public domain W3C validator