MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6257
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8323). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6326), so that the successor of any ordinal class is still an ordinal class (ordsuc 7636), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6253 . 2 class suc 𝐴
31csn 4558 . . 3 class {𝐴}
41, 3cun 3881 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1539 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceq  6316  elsuci  6317  elsucg  6318  elsuc2g  6319  nfsuc  6322  suc0  6325  sucprc  6326  unisuc  6327  sssucid  6328  iunsuc  6333  orddif  6344  sucexb  7631  suceloni  7635  onuninsuci  7662  omsucne  7706  tfrlem10  8189  tfrlem16  8195  df2o3  8282  oarec  8355  enrefnn  8791  enpr2d  8792  sucdom2  8822  limensuci  8889  infensuc  8891  phplem1  8892  pssnn  8913  unfi  8917  sucxpdom  8961  isinf  8965  pssnnOLD  8969  dif1enALT  8980  fiint  9021  pwfiOLD  9044  dffi3  9120  sucprcreg  9290  cantnfp1lem3  9368  ranksuc  9554  pm54.43  9690  dif1card  9697  fseqenlem1  9711  dju1en  9858  ackbij1lem1  9907  ackbij1lem2  9908  ackbij1lem5  9911  ackbij1lem14  9920  cfsuc  9944  fin23lem26  10012  axdc3lem4  10140  unsnen  10240  wunsuc  10404  fzennn  13616  hashp1i  14046  bnj927  32649  bnj98  32747  bnj543  32773  bnj970  32827  eqfunressuc  33642  dfon2lem3  33667  dfon2lem7  33671  on2recsov  33754  noextend  33796  nosupbday  33835  nosupbnd1  33844  nosupbnd2lem1  33845  nosupbnd2  33846  noinfbday  33850  noinfbnd1  33859  noinfbnd2lem1  33860  noinfbnd2  33861  madeoldsuc  33994  brsuccf  34170  onsucsuccmpi  34559  onint1  34565  pwfi2f1o  40837  df3o2  41523  df3o3  41524  grusucd  41737  sucidALTVD  42379  sucidALT  42380  sucidVD  42381
  Copyright terms: Public domain W3C validator