MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6312
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8446). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6384), so that the successor of any ordinal class is still an ordinal class (ordsuc 7744), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6308 . 2 class suc 𝐴
31csn 4573 . . 3 class {𝐴}
41, 3cun 3895 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1541 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceqd  6373  elsuci  6375  elsucg  6376  elsuc2g  6377  nfsuc  6380  suc0  6383  sucprc  6384  unisucs  6385  sssucid  6388  iunsuc  6393  orddif  6404  eqfunressuc  7295  sucexb  7737  ordsuci  7741  onuninsuci  7770  omsucne  7815  tfrlem10  8306  tfrlem16  8312  df2o3  8393  oarec  8477  on2recsov  8583  naddsuc2  8616  enrefnn  8968  limensuci  9066  infensuc  9068  pssnn  9078  unfi  9080  sucdom2  9112  sucxpdom  9145  isinf  9149  dif1ennnALT  9161  fiint  9211  dffi3  9315  sucprcreg  9490  cantnfp1lem3  9570  ranksuc  9758  pm54.43  9894  dif1card  9901  fseqenlem1  9915  dju1en  10063  ackbij1lem1  10110  ackbij1lem2  10111  ackbij1lem5  10114  ackbij1lem14  10123  cfsuc  10148  fin23lem26  10216  axdc3lem4  10344  unsnen  10444  wunsuc  10608  fzennn  13875  hashp1i  14310  noextend  27605  nosupbday  27644  nosupbnd1  27653  nosupbnd2lem1  27654  nosupbnd2  27655  noinfbday  27659  noinfbnd1  27668  noinfbnd2lem1  27669  noinfbnd2  27670  madeoldsuc  27830  bdayn0p1  28294  bnj927  34781  bnj98  34879  bnj543  34905  bnj970  34959  dfon2lem3  35827  dfon2lem7  35831  lemsuccf  35983  onsucsuccmpi  36487  onint1  36493  dfsucmap3  38486  sucdifsn  38508  ressucdifsn  38510  disjsuc  38867  pwfi2f1o  43199  df3o2  43416  df3o3  43417  omcl3g  43437  oa1un  43549  grusucd  44333  sucidALTVD  44972  sucidALT  44973  sucidVD  44974
  Copyright terms: Public domain W3C validator