MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6313
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8449). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6385), so that the successor of any ordinal class is still an ordinal class (ordsuc 7747), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6309 . 2 class suc 𝐴
31csn 4577 . . 3 class {𝐴}
41, 3cun 3901 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1540 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceqd  6374  elsuci  6376  elsucg  6377  elsuc2g  6378  nfsuc  6381  suc0  6384  sucprc  6385  unisucs  6386  sssucid  6389  iunsuc  6394  orddif  6405  eqfunressuc  7298  sucexb  7740  ordsuci  7744  onuninsuci  7773  omsucne  7818  tfrlem10  8309  tfrlem16  8315  df2o3  8396  oarec  8480  on2recsov  8586  naddsuc2  8619  enrefnn  8972  limensuci  9070  infensuc  9072  pssnn  9082  unfi  9085  sucdom2  9117  sucxpdom  9150  isinf  9154  dif1ennnALT  9166  fiint  9216  fiintOLD  9217  dffi3  9321  sucprcreg  9496  cantnfp1lem3  9576  ranksuc  9761  pm54.43  9897  dif1card  9904  fseqenlem1  9918  dju1en  10066  ackbij1lem1  10113  ackbij1lem2  10114  ackbij1lem5  10117  ackbij1lem14  10126  cfsuc  10151  fin23lem26  10219  axdc3lem4  10347  unsnen  10447  wunsuc  10611  fzennn  13875  hashp1i  14310  noextend  27576  nosupbday  27615  nosupbnd1  27624  nosupbnd2lem1  27625  nosupbnd2  27626  noinfbday  27630  noinfbnd1  27639  noinfbnd2lem1  27640  noinfbnd2  27641  madeoldsuc  27799  bdayn0p1  28263  bnj927  34742  bnj98  34840  bnj543  34866  bnj970  34920  dfon2lem3  35769  dfon2lem7  35773  brsuccf  35925  onsucsuccmpi  36427  onint1  36433  sucdifsn  38223  ressucdifsn  38229  disjsuc  38747  pwfi2f1o  43079  df3o2  43296  df3o3  43297  omcl3g  43317  oa1un  43429  grusucd  44213  sucidALTVD  44853  sucidALT  44854  sucidVD  44855
  Copyright terms: Public domain W3C validator