MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6370
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8533). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6440), so that the successor of any ordinal class is still an ordinal class (ordsuc 7803), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6366 . 2 class suc 𝐴
31csn 4628 . . 3 class {𝐴}
41, 3cun 3946 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1541 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceq  6430  elsuci  6431  elsucg  6432  elsuc2g  6433  nfsuc  6436  suc0  6439  sucprc  6440  unisucs  6441  sssucid  6444  iunsuc  6449  orddif  6460  eqfunressuc  7360  sucexb  7794  ordsuci  7798  sucexeloniOLD  7800  suceloniOLD  7802  onuninsuci  7831  omsucne  7876  tfrlem10  8389  tfrlem16  8395  df2o3  8476  oarec  8564  on2recsov  8669  enrefnn  9049  enpr2dOLD  9052  sucdom2OLD  9084  limensuci  9155  infensuc  9157  pssnn  9170  unfi  9174  sucdom2  9208  phplem1OLD  9219  sucxpdom  9257  isinf  9262  isinfOLD  9263  pssnnOLD  9267  dif1ennnALT  9279  fiint  9326  pwfiOLD  9349  dffi3  9428  sucprcreg  9598  cantnfp1lem3  9677  ranksuc  9862  pm54.43  9998  dif1card  10007  fseqenlem1  10021  dju1en  10168  ackbij1lem1  10217  ackbij1lem2  10218  ackbij1lem5  10221  ackbij1lem14  10230  cfsuc  10254  fin23lem26  10322  axdc3lem4  10450  unsnen  10550  wunsuc  10714  fzennn  13937  hashp1i  14367  noextend  27393  nosupbday  27432  nosupbnd1  27441  nosupbnd2lem1  27442  nosupbnd2  27443  noinfbday  27447  noinfbnd1  27456  noinfbnd2lem1  27457  noinfbnd2  27458  madeoldsuc  27604  bnj927  34066  bnj98  34164  bnj543  34190  bnj970  34244  dfon2lem3  35049  dfon2lem7  35053  brsuccf  35205  onsucsuccmpi  35631  onint1  35637  sucdifsn  37408  ressucdifsn  37414  disjsuc  37932  pwfi2f1o  42140  df3o2  42365  df3o3  42366  omcl3g  42386  naddsuc2  42445  oa1un  42499  grusucd  43291  sucidALTVD  43933  sucidALT  43934  sucidVD  43935
  Copyright terms: Public domain W3C validator