MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6401
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8587). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6471), so that the successor of any ordinal class is still an ordinal class (ordsuc 7849), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6397 . 2 class suc 𝐴
31csn 4648 . . 3 class {𝐴}
41, 3cun 3974 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1537 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceq  6461  elsuci  6462  elsucg  6463  elsuc2g  6464  nfsuc  6467  suc0  6470  sucprc  6471  unisucs  6472  sssucid  6475  iunsuc  6480  orddif  6491  eqfunressuc  7397  sucexb  7840  ordsuci  7844  sucexeloniOLD  7846  suceloniOLD  7848  onuninsuci  7877  omsucne  7922  tfrlem10  8443  tfrlem16  8449  df2o3  8530  oarec  8618  on2recsov  8724  naddsuc2  8757  enrefnn  9113  enpr2dOLD  9116  sucdom2OLD  9148  limensuci  9219  infensuc  9221  pssnn  9234  unfi  9238  sucdom2  9269  phplem1OLD  9280  sucxpdom  9318  isinf  9323  isinfOLD  9324  dif1ennnALT  9339  fiint  9394  fiintOLD  9395  pwfiOLD  9417  dffi3  9500  sucprcreg  9670  cantnfp1lem3  9749  ranksuc  9934  pm54.43  10070  dif1card  10079  fseqenlem1  10093  dju1en  10241  ackbij1lem1  10288  ackbij1lem2  10289  ackbij1lem5  10292  ackbij1lem14  10301  cfsuc  10326  fin23lem26  10394  axdc3lem4  10522  unsnen  10622  wunsuc  10786  fzennn  14019  hashp1i  14452  noextend  27729  nosupbday  27768  nosupbnd1  27777  nosupbnd2lem1  27778  nosupbnd2  27779  noinfbday  27783  noinfbnd1  27792  noinfbnd2lem1  27793  noinfbnd2  27794  madeoldsuc  27941  bnj927  34745  bnj98  34843  bnj543  34869  bnj970  34923  dfon2lem3  35749  dfon2lem7  35753  brsuccf  35905  onsucsuccmpi  36409  onint1  36415  sucdifsn  38194  ressucdifsn  38200  disjsuc  38715  pwfi2f1o  43053  df3o2  43275  df3o3  43276  omcl3g  43296  oa1un  43408  grusucd  44199  sucidALTVD  44841  sucidALT  44842  sucidVD  44843
  Copyright terms: Public domain W3C validator