MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-suc Structured version   Visualization version   GIF version

Definition df-suc 6326
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8472). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6398), so that the successor of any ordinal class is still an ordinal class (ordsuc 7768), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
df-suc suc 𝐴 = (𝐴 ∪ {𝐴})

Detailed syntax breakdown of Definition df-suc
StepHypRef Expression
1 cA . . 3 class 𝐴
21csuc 6322 . 2 class suc 𝐴
31csn 4585 . . 3 class {𝐴}
41, 3cun 3909 . 2 class (𝐴 ∪ {𝐴})
52, 4wceq 1540 1 wff suc 𝐴 = (𝐴 ∪ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  suceqd  6387  elsuci  6389  elsucg  6390  elsuc2g  6391  nfsuc  6394  suc0  6397  sucprc  6398  unisucs  6399  sssucid  6402  iunsuc  6407  orddif  6418  eqfunressuc  7318  sucexb  7760  ordsuci  7764  sucexeloniOLD  7766  onuninsuci  7796  omsucne  7841  tfrlem10  8332  tfrlem16  8338  df2o3  8419  oarec  8503  on2recsov  8609  naddsuc2  8642  enrefnn  8995  enpr2dOLD  8998  limensuci  9094  infensuc  9096  pssnn  9109  unfi  9112  sucdom2  9144  sucxpdom  9178  isinf  9183  isinfOLD  9184  dif1ennnALT  9198  fiint  9253  fiintOLD  9254  dffi3  9358  sucprcreg  9530  cantnfp1lem3  9609  ranksuc  9794  pm54.43  9930  dif1card  9939  fseqenlem1  9953  dju1en  10101  ackbij1lem1  10148  ackbij1lem2  10149  ackbij1lem5  10152  ackbij1lem14  10161  cfsuc  10186  fin23lem26  10254  axdc3lem4  10382  unsnen  10482  wunsuc  10646  fzennn  13909  hashp1i  14344  noextend  27611  nosupbday  27650  nosupbnd1  27659  nosupbnd2lem1  27660  nosupbnd2  27661  noinfbday  27665  noinfbnd1  27674  noinfbnd2lem1  27675  noinfbnd2  27676  madeoldsuc  27834  bdayn0p1  28298  bnj927  34752  bnj98  34850  bnj543  34876  bnj970  34930  dfon2lem3  35766  dfon2lem7  35770  brsuccf  35922  onsucsuccmpi  36424  onint1  36430  sucdifsn  38220  ressucdifsn  38226  disjsuc  38744  pwfi2f1o  43078  df3o2  43295  df3o3  43296  omcl3g  43316  oa1un  43428  grusucd  44212  sucidALTVD  44852  sucidALT  44853  sucidVD  44854
  Copyright terms: Public domain W3C validator