![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4188 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
2 | df-suc 6392 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 ⊆ wss 3963 {csn 4631 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-suc 6392 |
This theorem is referenced by: trsuc 6473 sucexeloniOLD 7830 suceloniOLD 7832 limsssuc 7871 oaordi 8583 omeulem1 8619 oelim2 8632 nnaordi 8655 naddcllem 8713 phplem2 9243 php 9245 phplem4OLD 9255 phpOLD 9257 onomeneqOLD 9264 enp1i 9311 fiint 9364 fiintOLD 9365 cantnfval2 9707 cantnfle 9709 cantnfp1lem3 9718 cnfcomlem 9737 ttrclss 9758 ranksuc 9903 fseqenlem1 10062 pwsdompw 10241 fin1a2lem12 10449 canthp1lem2 10691 nosupbnd1 27774 nosupbnd2lem1 27775 noinfbnd1 27789 noinfbnd2lem1 27790 satfvsucsuc 35350 satffunlem2lem2 35391 satffunlem2 35393 limsucncmpi 36428 finxpreclem3 37376 insucid 43393 minregex 43524 clsk1independent 44036 grur1cld 44228 suctrALT 44824 suctrALT2VD 44834 suctrALT2 44835 suctrALTcf 44920 suctrALTcfVD 44921 suctrALT3 44922 |
Copyright terms: Public domain | W3C validator |