Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4111 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
2 | df-suc 6271 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | sseqtrri 3963 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3890 ⊆ wss 3892 {csn 4567 suc csuc 6267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-un 3897 df-in 3899 df-ss 3909 df-suc 6271 |
This theorem is referenced by: trsuc 6349 sucexeloni 7652 suceloniOLD 7654 limsssuc 7691 oaordi 8362 omeulem1 8398 oelim2 8411 nnaordi 8434 phplem2 8972 php 8974 phplem4OLD 8985 phpOLD 8987 onomeneq 8992 fiint 9069 cantnfval2 9405 cantnfle 9407 cantnfp1lem3 9416 cnfcomlem 9435 ttrclss 9456 ranksuc 9624 fseqenlem1 9781 pwsdompw 9961 fin1a2lem12 10168 canthp1lem2 10410 satfvsucsuc 33323 satffunlem2lem2 33364 satffunlem2 33366 naddcllem 33827 nosupbnd1 33913 nosupbnd2lem1 33914 noinfbnd1 33928 noinfbnd2lem1 33929 limsucncmpi 34630 finxpreclem3 35560 clsk1independent 41626 grur1cld 41820 suctrALT 42416 suctrALT2VD 42426 suctrALT2 42427 suctrALTcf 42512 suctrALTcfVD 42513 suctrALT3 42514 |
Copyright terms: Public domain | W3C validator |