| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4144 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 6341 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 3999 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 {csn 4592 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-suc 6341 |
| This theorem is referenced by: trsuc 6424 sucexeloniOLD 7789 limsssuc 7829 oaordi 8513 omeulem1 8549 oelim2 8562 nnaordi 8585 naddcllem 8643 phplem2 9175 php 9177 enp1i 9231 fiint 9284 fiintOLD 9285 cantnfval2 9629 cantnfle 9631 cantnfp1lem3 9640 cnfcomlem 9659 ttrclss 9680 ranksuc 9825 fseqenlem1 9984 pwsdompw 10163 fin1a2lem12 10371 canthp1lem2 10613 nosupbnd1 27633 nosupbnd2lem1 27634 noinfbnd1 27648 noinfbnd2lem1 27649 satfvsucsuc 35359 satffunlem2lem2 35400 satffunlem2 35402 limsucncmpi 36440 finxpreclem3 37388 insucid 43399 minregex 43530 clsk1independent 44042 grur1cld 44228 suctrALT 44822 suctrALT2VD 44832 suctrALT2 44833 suctrALTcf 44918 suctrALTcfVD 44919 suctrALT3 44920 |
| Copyright terms: Public domain | W3C validator |