| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4129 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 6313 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 3985 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3901 ⊆ wss 3903 {csn 4577 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-suc 6313 |
| This theorem is referenced by: trsuc 6396 limsssuc 7783 oaordi 8464 omeulem1 8500 oelim2 8513 nnaordi 8536 naddcllem 8594 phplem2 9119 php 9121 enp1i 9168 fiint 9216 fiintOLD 9217 cantnfval2 9565 cantnfle 9567 cantnfp1lem3 9576 cnfcomlem 9595 ttrclss 9616 ranksuc 9761 fseqenlem1 9918 pwsdompw 10097 fin1a2lem12 10305 canthp1lem2 10547 nosupbnd1 27624 nosupbnd2lem1 27625 noinfbnd1 27639 noinfbnd2lem1 27640 satfvsucsuc 35338 satffunlem2lem2 35379 satffunlem2 35381 limsucncmpi 36419 finxpreclem3 37367 insucid 43376 minregex 43507 clsk1independent 44019 grur1cld 44205 suctrALT 44799 suctrALT2VD 44809 suctrALT2 44810 suctrALTcf 44895 suctrALTcfVD 44896 suctrALT3 44897 |
| Copyright terms: Public domain | W3C validator |