| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4141 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 6338 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 3996 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3912 ⊆ wss 3914 {csn 4589 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-suc 6338 |
| This theorem is referenced by: trsuc 6421 sucexeloniOLD 7786 limsssuc 7826 oaordi 8510 omeulem1 8546 oelim2 8559 nnaordi 8582 naddcllem 8640 phplem2 9169 php 9171 enp1i 9224 fiint 9277 fiintOLD 9278 cantnfval2 9622 cantnfle 9624 cantnfp1lem3 9633 cnfcomlem 9652 ttrclss 9673 ranksuc 9818 fseqenlem1 9977 pwsdompw 10156 fin1a2lem12 10364 canthp1lem2 10606 nosupbnd1 27626 nosupbnd2lem1 27627 noinfbnd1 27641 noinfbnd2lem1 27642 satfvsucsuc 35352 satffunlem2lem2 35393 satffunlem2 35395 limsucncmpi 36433 finxpreclem3 37381 insucid 43392 minregex 43523 clsk1independent 44035 grur1cld 44221 suctrALT 44815 suctrALT2VD 44825 suctrALT2 44826 suctrALTcf 44911 suctrALTcfVD 44912 suctrALT3 44913 |
| Copyright terms: Public domain | W3C validator |