| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4137 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 6326 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 3993 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 {csn 4585 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-suc 6326 |
| This theorem is referenced by: trsuc 6409 sucexeloniOLD 7766 limsssuc 7806 oaordi 8487 omeulem1 8523 oelim2 8536 nnaordi 8559 naddcllem 8617 phplem2 9146 php 9148 enp1i 9200 fiint 9253 fiintOLD 9254 cantnfval2 9598 cantnfle 9600 cantnfp1lem3 9609 cnfcomlem 9628 ttrclss 9649 ranksuc 9794 fseqenlem1 9953 pwsdompw 10132 fin1a2lem12 10340 canthp1lem2 10582 nosupbnd1 27659 nosupbnd2lem1 27660 noinfbnd1 27674 noinfbnd2lem1 27675 satfvsucsuc 35345 satffunlem2lem2 35386 satffunlem2 35388 limsucncmpi 36426 finxpreclem3 37374 insucid 43385 minregex 43516 clsk1independent 44028 grur1cld 44214 suctrALT 44808 suctrALT2VD 44818 suctrALT2 44819 suctrALTcf 44904 suctrALTcfVD 44905 suctrALT3 44906 |
| Copyright terms: Public domain | W3C validator |