![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
2 | df-suc 6401 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 {csn 4648 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-suc 6401 |
This theorem is referenced by: trsuc 6482 sucexeloniOLD 7846 suceloniOLD 7848 limsssuc 7887 oaordi 8602 omeulem1 8638 oelim2 8651 nnaordi 8674 naddcllem 8732 phplem2 9271 php 9273 phplem4OLD 9283 phpOLD 9285 onomeneqOLD 9292 enp1i 9341 fiint 9394 fiintOLD 9395 cantnfval2 9738 cantnfle 9740 cantnfp1lem3 9749 cnfcomlem 9768 ttrclss 9789 ranksuc 9934 fseqenlem1 10093 pwsdompw 10272 fin1a2lem12 10480 canthp1lem2 10722 nosupbnd1 27777 nosupbnd2lem1 27778 noinfbnd1 27792 noinfbnd2lem1 27793 satfvsucsuc 35333 satffunlem2lem2 35374 satffunlem2 35376 limsucncmpi 36411 finxpreclem3 37359 insucid 43365 minregex 43496 clsk1independent 44008 grur1cld 44201 suctrALT 44797 suctrALT2VD 44807 suctrALT2 44808 suctrALTcf 44893 suctrALTcfVD 44894 suctrALT3 44895 |
Copyright terms: Public domain | W3C validator |