Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4102 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
2 | df-suc 6257 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | sseqtrri 3954 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3881 ⊆ wss 3883 {csn 4558 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-suc 6257 |
This theorem is referenced by: trsuc 6335 suceloni 7635 limsssuc 7672 oaordi 8339 omeulem1 8375 oelim2 8388 nnaordi 8411 phplem4 8895 php 8897 onomeneq 8943 fiint 9021 cantnfval2 9357 cantnfle 9359 cantnfp1lem3 9368 cnfcomlem 9387 ranksuc 9554 fseqenlem1 9711 pwsdompw 9891 fin1a2lem12 10098 canthp1lem2 10340 satfvsucsuc 33227 satffunlem2lem2 33268 satffunlem2 33270 ttrclss 33706 naddcllem 33758 nosupbnd1 33844 nosupbnd2lem1 33845 noinfbnd1 33859 noinfbnd2lem1 33860 limsucncmpi 34561 finxpreclem3 35491 clsk1independent 41545 grur1cld 41739 suctrALT 42335 suctrALT2VD 42345 suctrALT2 42346 suctrALTcf 42431 suctrALTcfVD 42432 suctrALT3 42433 |
Copyright terms: Public domain | W3C validator |