| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4153 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 6358 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 4008 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3924 ⊆ wss 3926 {csn 4601 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-suc 6358 |
| This theorem is referenced by: trsuc 6441 sucexeloniOLD 7804 suceloniOLD 7806 limsssuc 7845 oaordi 8558 omeulem1 8594 oelim2 8607 nnaordi 8630 naddcllem 8688 phplem2 9219 php 9221 phpOLD 9231 onomeneqOLD 9238 enp1i 9285 fiint 9338 fiintOLD 9339 cantnfval2 9683 cantnfle 9685 cantnfp1lem3 9694 cnfcomlem 9713 ttrclss 9734 ranksuc 9879 fseqenlem1 10038 pwsdompw 10217 fin1a2lem12 10425 canthp1lem2 10667 nosupbnd1 27678 nosupbnd2lem1 27679 noinfbnd1 27693 noinfbnd2lem1 27694 satfvsucsuc 35387 satffunlem2lem2 35428 satffunlem2 35430 limsucncmpi 36463 finxpreclem3 37411 insucid 43427 minregex 43558 clsk1independent 44070 grur1cld 44256 suctrALT 44850 suctrALT2VD 44860 suctrALT2 44861 suctrALTcf 44946 suctrALTcfVD 44947 suctrALT3 44948 |
| Copyright terms: Public domain | W3C validator |