Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4106 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
2 | df-suc 6272 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | sseqtrri 3958 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3885 ⊆ wss 3887 {csn 4561 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-suc 6272 |
This theorem is referenced by: trsuc 6350 sucexeloni 7658 suceloniOLD 7660 limsssuc 7697 oaordi 8377 omeulem1 8413 oelim2 8426 nnaordi 8449 phplem2 8991 php 8993 phplem4OLD 9003 phpOLD 9005 onomeneqOLD 9012 fiint 9091 cantnfval2 9427 cantnfle 9429 cantnfp1lem3 9438 cnfcomlem 9457 ttrclss 9478 ranksuc 9623 fseqenlem1 9780 pwsdompw 9960 fin1a2lem12 10167 canthp1lem2 10409 satfvsucsuc 33327 satffunlem2lem2 33368 satffunlem2 33370 naddcllem 33831 nosupbnd1 33917 nosupbnd2lem1 33918 noinfbnd1 33932 noinfbnd2lem1 33933 limsucncmpi 34634 finxpreclem3 35564 minregex 41141 clsk1independent 41656 grur1cld 41850 suctrALT 42446 suctrALT2VD 42456 suctrALT2 42457 suctrALTcf 42542 suctrALTcfVD 42543 suctrALT3 42544 |
Copyright terms: Public domain | W3C validator |