| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssucid | Structured version Visualization version GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4125 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 6312 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 3979 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3895 ⊆ wss 3897 {csn 4573 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-suc 6312 |
| This theorem is referenced by: trsuc 6395 limsssuc 7780 oaordi 8461 omeulem1 8497 oelim2 8510 nnaordi 8533 naddcllem 8591 phplem2 9114 php 9116 enp1i 9163 fiint 9211 cantnfval2 9559 cantnfle 9561 cantnfp1lem3 9570 cnfcomlem 9589 ttrclss 9610 ranksuc 9758 fseqenlem1 9915 pwsdompw 10094 fin1a2lem12 10302 canthp1lem2 10544 nosupbnd1 27653 nosupbnd2lem1 27654 noinfbnd1 27668 noinfbnd2lem1 27669 satfvsucsuc 35409 satffunlem2lem2 35450 satffunlem2 35452 limsucncmpi 36487 finxpreclem3 37435 insucid 43444 minregex 43575 clsk1independent 44087 grur1cld 44273 suctrALT 44866 suctrALT2VD 44876 suctrALT2 44877 suctrALTcf 44962 suctrALTcfVD 44963 suctrALT3 44964 |
| Copyright terms: Public domain | W3C validator |