| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotajust | Structured version Visualization version GIF version | ||
| Description: Soundness justification theorem for df-iota 6466. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| iotajust | ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4601 | . . . . 5 ⊢ (𝑦 = 𝑤 → {𝑦} = {𝑤}) | |
| 2 | 1 | eqeq2d 2741 | . . . 4 ⊢ (𝑦 = 𝑤 → ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝑤})) |
| 3 | 2 | cbvabv 2800 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} |
| 4 | sneq 4601 | . . . . 5 ⊢ (𝑤 = 𝑧 → {𝑤} = {𝑧}) | |
| 5 | 4 | eqeq2d 2741 | . . . 4 ⊢ (𝑤 = 𝑧 → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑥 ∣ 𝜑} = {𝑧})) |
| 6 | 5 | cbvabv 2800 | . . 3 ⊢ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| 7 | 3, 6 | eqtri 2753 | . 2 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| 8 | 7 | unieqi 4885 | 1 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 {csn 4591 ∪ cuni 4873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3933 df-sn 4592 df-uni 4874 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |