![]() |
Metamath
Proof Explorer Theorem List (p. 66 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | onssneli 6501 | An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) | ||
Theorem | onssnel2i 6502 | An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ⊆ 𝐴 → ¬ 𝐴 ∈ 𝐵) | ||
Theorem | onelini 6503 | An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) | ||
Theorem | oneluni 6504 | An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) | ||
Theorem | onunisuci 6505 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
⊢ 𝐴 ∈ On ⇒ ⊢ ∪ suc 𝐴 = 𝐴 | ||
Theorem | onsseli 6506 | Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995.) |
⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | onun2i 6507 | The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) |
⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ On | ||
Theorem | unizlim 6508 | An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) | ||
Theorem | on0eqel 6509 | An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | ||
Theorem | snsn0non 6510 | The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7890). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6511. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ ¬ {{∅}} ∈ On | ||
Theorem | onxpdisj 6511 | Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6510. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (On ∩ (V × V)) = ∅ | ||
Theorem | onnev 6512 | The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.) |
⊢ On ≠ V | ||
Syntax | cio 6513 | Extend class notation with Russell's definition description binder (inverted iota). |
class (℩𝑥𝜑) | ||
Theorem | iotajust 6514* | Soundness justification theorem for df-iota 6515. (Contributed by Andrew Salmon, 29-Jun-2011.) |
⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | ||
Definition | df-iota 6515* |
Define Russell's definition description binder, which can be read as
"the unique 𝑥 such that 𝜑", where 𝜑
ordinarily contains
𝑥 as a free variable. Our definition
is meaningful only when there
is exactly one 𝑥 such that 𝜑 is true (see iotaval 6533);
otherwise, it evaluates to the empty set (see iotanul 6540). Russell used
the inverted iota symbol ℩ to represent
the binder.
Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7403 (or iotacl 6548 for unbounded iota), as demonstrated in the proof of supub 9496. This can be easier than applying riotasbc 7405 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF. (Contributed by Andrew Salmon, 30-Jun-2011.) |
⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | ||
Theorem | dfiota2 6516* | Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | ||
Theorem | nfiota1 6517 | Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥(℩𝑥𝜑) | ||
Theorem | nfiotadw 6518* | Deduction version of nfiotaw 6519. Version of nfiotad 6520 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2374. (Revised by GG, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | ||
Theorem | nfiotaw 6519* | Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6521 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2374. (Revised by GG, 26-Jan-2024.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥(℩𝑦𝜑) | ||
Theorem | nfiotad 6520 | Deduction version of nfiota 6521. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker nfiotadw 6518 when possible. (Contributed by NM, 18-Feb-2013.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | ||
Theorem | nfiota 6521 | Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker nfiotaw 6519 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥(℩𝑦𝜑) | ||
Theorem | cbviotaw 6522* | Change bound variables in a description binder. Version of cbviota 6524 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by Andrew Salmon, 1-Aug-2011.) Avoid ax-13 2374. (Revised by GG, 26-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotavw 6523* | Change bound variables in a description binder. Version of cbviotav 6525 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviota 6524 | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbviotaw 6522 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | cbviotav 6525* | Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbviotavw 6523 when possible. (Contributed by Andrew Salmon, 1-Aug-2011.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
Theorem | sb8iota 6526 | Variable substitution in description binder. Compare sb8eu 2597. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 18-Mar-2013.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | iotaeq 6527 | Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) | ||
Theorem | iotabi 6528 | Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | ||
Theorem | uniabio 6529* | Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) | ||
Theorem | iotaval2 6530* | Version of iotaval 6533 using df-iota 6515 instead of dfiota2 6516. (Contributed by SN, 6-Nov-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | ||
Theorem | iotauni2 6531* | Version of iotauni 6537 using df-iota 6515 instead of dfiota2 6516. (Contributed by SN, 6-Nov-2024.) |
⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
Theorem | iotanul2 6532* | Version of iotanul 6540 using df-iota 6515 instead of dfiota2 6516. (Contributed by SN, 6-Nov-2024.) |
⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | ||
Theorem | iotaval 6533* | Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2138, ax-11 2154, ax-12 2174. (Revised by SN, 23-Nov-2024.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | ||
Theorem | iotassuni 6534 | The ℩ class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2138, ax-11 2154, ax-12 2174. (Revised by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
Theorem | iotaex 6535 | Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2138, ax-11 2154, ax-12 2174. (Revised by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ∈ V | ||
Theorem | iotavalOLD 6536* | Obsolete version of iotaval 6533 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | ||
Theorem | iotauni 6537 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
Theorem | iotaint 6538 | Equivalence between two different forms of ℩. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | iota1 6539 | Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | ||
Theorem | iotanul 6540 | Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | ||
Theorem | iotassuniOLD 6541 | Obsolete version of iotassuni 6534 as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
Theorem | iotaexOLD 6542 | Obsolete version of iotaex 6535 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (℩𝑥𝜑) ∈ V | ||
Theorem | iota4 6543 | Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | ||
Theorem | iota4an 6544 | Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) | ||
Theorem | iota5 6545* | A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
Theorem | iotabidv 6546* | Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) | ||
Theorem | iotabii 6547 | Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) | ||
Theorem | iotacl 6548 |
Membership law for descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6515). If you have a bounded iota-based definition, riotacl2 7403 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | iota2df 6549 | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2d 6550* | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2 6551* | The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | ||
Theorem | iotan0 6552* | Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) | ||
Theorem | sniota 6553 | A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) | ||
Theorem | dfiota4 6554 | The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) | ||
Theorem | csbiota 6555* | Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) | ||
Syntax | wfun 6556 | Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.) |
wff Fun 𝐴 | ||
Syntax | wfn 6557 | Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.) |
wff 𝐴 Fn 𝐵 | ||
Syntax | wf 6558 | Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.) |
wff 𝐹:𝐴⟶𝐵 | ||
Syntax | wf1 6559 | Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1→𝐵 | ||
Syntax | wfo 6560 | Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–onto→𝐵 | ||
Syntax | wf1o 6561 | Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1-onto→𝐵 | ||
Syntax | cfv 6562 | Extend the definition of a class to include the value of a function. Read: "the value of 𝐹 at 𝐴", or "𝐹 of 𝐴". |
class (𝐹‘𝐴) | ||
Syntax | wiso 6563 | Extend the definition of a wff to include the isomorphism property. Read: "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". |
wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
Definition | df-fun 6564 | Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 16102). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5230 with the maps-to notation (see df-mpt 5231 and df-mpo 7435). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6565), a function with a given domain and codomain (df-f 6566), a one-to-one function (df-f1 6567), an onto function (df-fo 6568), or a one-to-one onto function (df-f1o 6569). For alternate definitions, see dffun2 6572, dffun3 6576, dffun4 6578, dffun5 6579, dffun6 6575, dffun7 6594, dffun8 6595, and dffun9 6596. (Contributed by NM, 1-Aug-1994.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | ||
Definition | df-fn 6565 | Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6738, dffn3 6748, dffn4 6826, and dffn5 6966. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) | ||
Definition | df-f 6566 | Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7118, dff3 7119, and dff4 7120. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | ||
Definition | df-f1 6567 |
Define a one-to-one function. For equivalent definitions see dff12 6803
and dff13 7274. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow).
A one-to-one function is also called an "injection" or an "injective function", 𝐹:𝐴–1-1→𝐵 can be read as "𝐹 is an injection from 𝐴 into 𝐵". Injections are precisely the monomorphisms in the category SetCat of sets and set functions, see setcmon 18140. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | ||
Definition | df-fo 6568 |
Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6824, dffo3 7121, dffo4 7122, and dffo5 7123.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 18141. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | ||
Definition | df-f1o 6569 |
Define a one-to-one onto function. For equivalent definitions see
dff1o2 6853, dff1o3 6854, dff1o4 6856, and dff1o5 6857. Compare Definition
6.15(6) of [TakeutiZaring] p. 27.
We use their notation ("1-1" above
the arrow and "onto" below the arrow).
A one-to-one onto function is also called a "bijection" or a "bijective function", 𝐹:𝐴–1-1-onto→𝐵 can be read as "𝐹 is a bijection between 𝐴 and 𝐵". Bijections are precisely the isomorphisms in the category SetCat of sets and set functions, see setciso 18144. Therefore, two sets are called "isomorphic" if there is a bijection between them. According to isof1oidb 7343, two sets are isomorphic iff there is an isomorphism Isom regarding the identity relation. In this case, the two sets are also "equinumerous", see bren 8993. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | ||
Definition | df-fv 6570* | Define the value of a function, (𝐹‘𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16182 after we define cosine in df-cos 16102). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5231 and df-mpo 7435), but this is not required. For example, 𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9 (ex-fv 30471). Note that df-ov 7433 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6941 and fvprc 6898). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 7003, dffv3 6902, fv2 6901, and fv3 6924 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6995 and funfv2 6996. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6962. (Contributed by NM, 1-Aug-1994.) Revised to use ℩. Original version is now Theorem dffv4 6903. (Revised by Scott Fenton, 6-Oct-2017.) |
⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | ||
Definition | df-isom 6571* | Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||
Theorem | dffun2 6572* | Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2138, ax-12 2174. (Revised by SN, 19-Dec-2024.) Avoid ax-11 2154. (Revised by BTernaryTau, 29-Dec-2024.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
Theorem | dffun2OLD 6573* | Obsolete version of dffun2 6572 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2138, ax-12 2174. (Revised by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
Theorem | dffun2OLDOLD 6574* | Obsolete version of dffun2 6572 as of 11-Dec-2024. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
Theorem | dffun6 6575* | Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2138, ax-12 2174. (Revised by SN, 19-Dec-2024.) |
⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
Theorem | dffun3 6576* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof shortened by SN, 19-Dec-2024.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
Theorem | dffun3OLD 6577* | Obsolete version of dffun3 6576 as of 19-Dec-2024. Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
Theorem | dffun4 6578* | Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | ||
Theorem | dffun5 6579* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | ||
Theorem | dffun6f 6580* | Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun6OLD 6581* | Obsolete version of dffun6 6575 as of 19-Dec-2024. (Contributed by NM, 9-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
Theorem | funmo 6582* | A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) (Proof shortened by SN, 19-Dec-2024.) |
⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
Theorem | funmoOLD 6583* | Obsolete version of funmo 6582 as of 19-Dec-2024. (Contributed by NM, 24-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
Theorem | funrel 6584 | A function is a relation. (Contributed by NM, 1-Aug-1994.) |
⊢ (Fun 𝐴 → Rel 𝐴) | ||
Theorem | 0nelfun 6585 | A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
⊢ (Fun 𝑅 → ∅ ∉ 𝑅) | ||
Theorem | funss 6586 | Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | ||
Theorem | funeq 6587 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
Theorem | funeqi 6588 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (Fun 𝐴 ↔ Fun 𝐵) | ||
Theorem | funeqd 6589 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
Theorem | nffun 6590 | Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥Fun 𝐹 | ||
Theorem | sbcfung 6591 | Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝐴 / 𝑥⦌𝐹)) | ||
Theorem | funeu 6592* | There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
Theorem | funeu2 6593* | There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ 𝐹) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) | ||
Theorem | dffun7 6594* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 6595 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun8 6595* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 6594. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun9 6596* | Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) | ||
Theorem | funfn 6597 | A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | ||
Theorem | funfnd 6598 | A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → Fun 𝐴) ⇒ ⊢ (𝜑 → 𝐴 Fn dom 𝐴) | ||
Theorem | funi 6599 | The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6696. (Contributed by NM, 30-Apr-1998.) |
⊢ Fun I | ||
Theorem | nfunv 6600 | The universal class is not a function. (Contributed by Raph Levien, 27-Jan-2004.) |
⊢ ¬ Fun V |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |