HomeHome Metamath Proof Explorer
Theorem List (p. 66 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 6501-6600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfntpg 6501 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
 
Theoremfntp 6502 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
 
Theoremfuncnvpr 6503 The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
 
Theoremfuncnvtp 6504 The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
(((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
 
Theoremfuncnvqp 6505 The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) (Proof shortened by JJ, 14-Jul-2021.)
((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
 
Theoremfun0 6506 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Fun ∅
 
Theoremfuncnv0 6507 The converse of the empty set is a function. (Contributed by AV, 7-Jan-2021.)
Fun
 
Theoremfuncnvcnv 6508 The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
(Fun 𝐴 → Fun 𝐴)
 
Theoremfuncnv2 6509* A simpler equivalence for single-rooted (see funcnv 6510). (Contributed by NM, 9-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv 6510* The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 6509 for a simpler version. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv3 6511* A condition showing a class is single-rooted. (See funcnv 6510). (Contributed by NM, 26-May-2006.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
 
Theoremfun2cnv 6512* The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
 
Theoremsvrelfun 6513 A single-valued relation is a function. (See fun2cnv 6512 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
 
Theoremfncnv 6514* Single-rootedness (see funcnv 6510) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.)
((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
 
Theoremfun11 6515* Two ways of stating that 𝐴 is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
((Fun 𝐴 ∧ Fun 𝐴) ↔ ∀𝑥𝑦𝑧𝑤((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theoremfununi 6516* The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
(∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
 
Theoremfunin 6517 The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(Fun 𝐹 → Fun (𝐹𝐺))
 
Theoremfunres11 6518 The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
(Fun 𝐹 → Fun (𝐹𝐴))
 
Theoremfuncnvres 6519 The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
(Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
 
Theoremcnvresid 6520 Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
( I ↾ 𝐴) = ( I ↾ 𝐴)
 
Theoremfuncnvres2 6521 The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
(Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
 
Theoremfunimacnv 6522 The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
(Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
 
Theoremfunimass1 6523 A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
 
Theoremfunimass2 6524 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
 
Theoremimadif 6525 The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
 
Theoremimain 6526 The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
 
Theoremfunimaexg 6527 Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2138, ax-12 2172. (Revised by SN, 19-Dec-2024.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
TheoremfunimaexgOLD 6528 Obsolete version of funimaexg 6527 as of 19-Dec-2024. (Contributed by NM, 10-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremfunimaex 6529 The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5210. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
𝐵 ∈ V       (Fun 𝐴 → (𝐴𝐵) ∈ V)
 
Theoremisarep1 6530* Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) (Proof shortened by SN, 19-Dec-2024.)
(𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
 
Theoremisarep1OLD 6531* Obsolete version of isarep1 6530 as of 19-Dec-2024. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
 
Theoremisarep2 6532* Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6529. (Contributed by NM, 26-Oct-2006.)
𝐴 ∈ V    &   𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)       𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
 
Theoremfneq1 6533 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2 6534 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq1d 6535 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2d 6536 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq12d 6537 Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
 
Theoremfneq12 6538 Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
 
Theoremfneq1i 6539 Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹 = 𝐺       (𝐹 Fn 𝐴𝐺 Fn 𝐴)
 
Theoremfneq2i 6540 Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
𝐴 = 𝐵       (𝐹 Fn 𝐴𝐹 Fn 𝐵)
 
Theoremnffn 6541 Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
𝑥𝐹    &   𝑥𝐴       𝑥 𝐹 Fn 𝐴
 
Theoremfnfun 6542 A function with domain is a function. (Contributed by NM, 1-Aug-1994.)
(𝐹 Fn 𝐴 → Fun 𝐹)
 
Theoremfnfund 6543 A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐹 Fn 𝐴)       (𝜑 → Fun 𝐹)
 
Theoremfnrel 6544 A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
(𝐹 Fn 𝐴 → Rel 𝐹)
 
Theoremfndm 6545 The domain of a function. (Contributed by NM, 2-Aug-1994.)
(𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
 
Theoremfndmi 6546 The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.)
𝐹 Fn 𝐴       dom 𝐹 = 𝐴
 
Theoremfndmd 6547 The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹 Fn 𝐴)       (𝜑 → dom 𝐹 = 𝐴)
 
Theoremfunfni 6548 Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.)
((Fun 𝐹𝐵 ∈ dom 𝐹) → 𝜑)       ((𝐹 Fn 𝐴𝐵𝐴) → 𝜑)
 
Theoremfndmu 6549 A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)
 
Theoremfnbr 6550 The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
 
Theoremfnop 6551 The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)
 
Theoremfneu 6552* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
 
Theoremfneu2 6553* There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.)
((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
 
Theoremfnun 6554 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
 
Theoremfnund 6555 The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑 → (𝐴𝐵) = ∅)       (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))
 
Theoremfnunop 6556 Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.)
(𝜑𝑋𝑉)    &   (𝜑𝑌𝑊)    &   (𝜑𝐹 Fn 𝐷)    &   𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})    &   𝐸 = (𝐷 ∪ {𝑋})    &   (𝜑 → ¬ 𝑋𝐷)       (𝜑𝐺 Fn 𝐸)
 
Theoremfncofn 6557 Composition of a function with domain and a function as a function with domain. Generalization of fnco 6558. (Contributed by AV, 17-Sep-2024.)
((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
 
Theoremfnco 6558 Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
 
TheoremfncoOLD 6559 Obsolete version of fnco 6558 as of 20-Sep-2024. (Contributed by NM, 22-May-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
 
Theoremfnresdm 6560 A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
(𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
 
Theoremfnresdisj 6561 A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
(𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
 
Theorem2elresin 6562 Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
 
Theoremfnssresb 6563 Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
(𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
 
Theoremfnssres 6564 Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
 
Theoremfnssresd 6565 Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)       (𝜑 → (𝐹𝐵) Fn 𝐵)
 
Theoremfnresin1 6566 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
(𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
 
Theoremfnresin2 6567 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
(𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
 
Theoremfnres 6568* An equivalence for functionality of a restriction. Compare dffun8 6469. (Contributed by Mario Carneiro, 20-May-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
 
Theoremidfn 6569 The identity relation is a function on the universal class. See also funi 6473. (Contributed by BJ, 23-Dec-2023.)
I Fn V
 
Theoremfnresi 6570 The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.)
( I ↾ 𝐴) Fn 𝐴
 
TheoremfnresiOLD 6571 Obsolete proof of fnresi 6570 as of 27-Dec-2023. (Contributed by NM, 27-Aug-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
( I ↾ 𝐴) Fn 𝐴
 
Theoremfnima 6572 The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
 
Theoremfn0 6573 A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn ∅ ↔ 𝐹 = ∅)
 
Theoremfnimadisj 6574 A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)
 
Theoremfnimaeq0 6575 Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 40883. (Contributed by Stefan O'Rear, 21-Jan-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
 
Theoremdfmpt3 6576 Alternate definition for the maps-to notation df-mpt 5159. (Contributed by Mario Carneiro, 30-Dec-2016.)
(𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
 
Theoremmptfnf 6577 The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.)
𝑥𝐴       (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
 
Theoremfnmptf 6578 The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.)
𝑥𝐴       (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
 
Theoremfnopabg 6579* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
 
Theoremfnopab 6580* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
(𝑥𝐴 → ∃!𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       𝐹 Fn 𝐴
 
Theoremmptfng 6581* The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
 
Theoremfnmpt 6582* The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
 
Theoremfnmptd 6583* The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹 Fn 𝐴)
 
Theoremmpt0 6584 A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.)
(𝑥 ∈ ∅ ↦ 𝐴) = ∅
 
Theoremfnmpti 6585* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       𝐹 Fn 𝐴
 
Theoremdmmpti 6586* Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       dom 𝐹 = 𝐴
 
Theoremdmmptd 6587* The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐴 = (𝑥𝐵𝐶)    &   ((𝜑𝑥𝐵) → 𝐶𝑉)       (𝜑 → dom 𝐴 = 𝐵)
 
Theoremmptun 6588 Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
(𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))
 
Theorempartfun 6589 Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.)
(𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝐷))
 
Theoremfeq1 6590 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2 6591 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq3 6592 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
 
Theoremfeq23 6593 Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
 
Theoremfeq1d 6594 Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2d 6595 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq3d 6596 Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝑋𝐴𝐹:𝑋𝐵))
 
Theoremfeq12d 6597 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
 
Theoremfeq123d 6598 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
 
Theoremfeq123 6599 Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))
 
Theoremfeq1i 6600 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹 = 𝐺       (𝐹:𝐴𝐵𝐺:𝐴𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >