Home | Metamath
Proof Explorer Theorem List (p. 66 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | funimass2 6501 | A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) | ||
Theorem | imadif 6502 | The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.) |
⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | ||
Theorem | imain 6503 | The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) | ||
Theorem | funimaexg 6504 | Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | ||
Theorem | funimaex 6505 | The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5205. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) | ||
Theorem | isarep1 6506* | Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) | ||
Theorem | isarep2 6507* | Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6505. (Contributed by NM, 26-Oct-2006.) |
⊢ 𝐴 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) ⇒ ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) | ||
Theorem | fneq1 6508 | Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | ||
Theorem | fneq2 6509 | Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | ||
Theorem | fneq1d 6510 | Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | ||
Theorem | fneq2d 6511 | Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | ||
Theorem | fneq12d 6512 | Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) | ||
Theorem | fneq12 6513 | Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) | ||
Theorem | fneq1i 6514 | Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐹 = 𝐺 ⇒ ⊢ (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴) | ||
Theorem | fneq2i 6515 | Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) | ||
Theorem | nffn 6516 | Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 | ||
Theorem | fnfun 6517 | A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | ||
Theorem | fnfund 6518 | A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | fnrel 6519 | A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | ||
Theorem | fndm 6520 | The domain of a function. (Contributed by NM, 2-Aug-1994.) |
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | ||
Theorem | fndmi 6521 | The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
⊢ 𝐹 Fn 𝐴 ⇒ ⊢ dom 𝐹 = 𝐴 | ||
Theorem | fndmd 6522 | The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) ⇒ ⊢ (𝜑 → dom 𝐹 = 𝐴) | ||
Theorem | funfni 6523 | Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) | ||
Theorem | fndmu 6524 | A function has a unique domain. (Contributed by NM, 11-Aug-1994.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐵) → 𝐴 = 𝐵) | ||
Theorem | fnbr 6525 | The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) | ||
Theorem | fnop 6526 | The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.) |
⊢ ((𝐹 Fn 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝐹) → 𝐵 ∈ 𝐴) | ||
Theorem | fneu 6527* | There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) | ||
Theorem | fneu2 6528* | There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) | ||
Theorem | fnun 6529 | The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.) |
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | ||
Theorem | fnund 6530 | The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | ||
Theorem | fnunop 6531 | Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) & ⊢ 𝐸 = (𝐷 ∪ {𝑋}) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝐺 Fn 𝐸) | ||
Theorem | fncofn 6532 | Composition of a function with domain and a function as a function with domain. Generalization of fnco 6533. (Contributed by AV, 17-Sep-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | ||
Theorem | fnco 6533 | Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | ||
Theorem | fncoOLD 6534 | Obsolete version of fnco 6533 as of 20-Sep-2024. (Contributed by NM, 22-May-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | ||
Theorem | fnresdm 6535 | A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | ||
Theorem | fnresdisj 6536 | A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.) |
⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) | ||
Theorem | 2elresin 6537 | Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐺) ↔ (〈𝑥, 𝑦〉 ∈ (𝐹 ↾ (𝐴 ∩ 𝐵)) ∧ 〈𝑥, 𝑧〉 ∈ (𝐺 ↾ (𝐴 ∩ 𝐵))))) | ||
Theorem | fnssresb 6538 | Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.) |
⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | ||
Theorem | fnssres 6539 | Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | ||
Theorem | fnssresd 6540 | Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) | ||
Theorem | fnresin1 6541 | Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.) |
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴 ∩ 𝐵)) Fn (𝐴 ∩ 𝐵)) | ||
Theorem | fnresin2 6542 | Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.) |
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵 ∩ 𝐴)) Fn (𝐵 ∩ 𝐴)) | ||
Theorem | fnres 6543* | An equivalence for functionality of a restriction. Compare dffun8 6446. (Contributed by Mario Carneiro, 20-May-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ((𝐹 ↾ 𝐴) Fn 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) | ||
Theorem | idfn 6544 | The identity relation is a function on the universal class. See also funi 6450. (Contributed by BJ, 23-Dec-2023.) |
⊢ I Fn V | ||
Theorem | fnresi 6545 | The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
⊢ ( I ↾ 𝐴) Fn 𝐴 | ||
Theorem | fnresiOLD 6546 | Obsolete proof of fnresi 6545 as of 27-Dec-2023. (Contributed by NM, 27-Aug-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( I ↾ 𝐴) Fn 𝐴 | ||
Theorem | fnima 6547 | The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | ||
Theorem | fn0 6548 | A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | ||
Theorem | fnimadisj 6549 | A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.) |
⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) | ||
Theorem | fnimaeq0 6550 | Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 40792. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) | ||
Theorem | dfmpt3 6551 | Alternate definition for the maps-to notation df-mpt 5154. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | ||
Theorem | mptfnf 6552 | The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) | ||
Theorem | fnmptf 6553 | The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) | ||
Theorem | fnopabg 6554* | Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) | ||
Theorem | fnopab 6555* | Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.) |
⊢ (𝑥 ∈ 𝐴 → ∃!𝑦𝜑) & ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⇒ ⊢ 𝐹 Fn 𝐴 | ||
Theorem | mptfng 6556* | The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) | ||
Theorem | fnmpt 6557* | The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) | ||
Theorem | fnmptd 6558* | The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 Fn 𝐴) | ||
Theorem | mpt0 6559 | A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ | ||
Theorem | fnmpti 6560* | Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 ∈ V & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ 𝐹 Fn 𝐴 | ||
Theorem | dmmpti 6561* | Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 ∈ V & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = 𝐴 | ||
Theorem | dmmptd 6562* | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | mptun 6563 | Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ∪ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | partfun 6564 | Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) | ||
Theorem | feq1 6565 | Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | ||
Theorem | feq2 6566 | Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | ||
Theorem | feq3 6567 | Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) | ||
Theorem | feq23 6568 | Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | ||
Theorem | feq1d 6569 | Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | ||
Theorem | feq2d 6570 | Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | ||
Theorem | feq3d 6571 | Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | ||
Theorem | feq12d 6572 | Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) | ||
Theorem | feq123d 6573 | Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) | ||
Theorem | feq123 6574 | Equality theorem for functions. (Contributed by FL, 16-Nov-2008.) |
⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐶⟶𝐷)) | ||
Theorem | feq1i 6575 | Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐹 = 𝐺 ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) | ||
Theorem | feq2i 6576 | Equality inference for functions. (Contributed by NM, 5-Sep-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶) | ||
Theorem | feq12i 6577 | Equality inference for functions. (Contributed by AV, 7-Feb-2021.) |
⊢ 𝐹 = 𝐺 & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶) | ||
Theorem | feq23i 6578 | Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) | ||
Theorem | feq23d 6579 | Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | ||
Theorem | nff 6580 | Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 | ||
Theorem | sbcfng 6581* | Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) | ||
Theorem | sbcfg 6582* | Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) | ||
Theorem | elimf 6583 | Eliminate a mapping hypothesis for the weak deduction theorem dedth 4514, when a special case 𝐺:𝐴⟶𝐵 is provable, in order to convert 𝐹:𝐴⟶𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.) |
⊢ 𝐺:𝐴⟶𝐵 ⇒ ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 | ||
Theorem | ffn 6584 | A mapping is a function with domain. (Contributed by NM, 2-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | ||
Theorem | ffnd 6585 | A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → 𝐹 Fn 𝐴) | ||
Theorem | dffn2 6586 | Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | ||
Theorem | ffun 6587 | A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | ||
Theorem | ffund 6588 | A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | frel 6589 | A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | ||
Theorem | freld 6590 | A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → Rel 𝐹) | ||
Theorem | frn 6591 | The range of a mapping. (Contributed by NM, 3-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | ||
Theorem | frnd 6592 | Deduction form of frn 6591. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) | ||
Theorem | fdm 6593 | The domain of a mapping. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 29-May-2024.) |
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | ||
Theorem | fdmOLD 6594 | Obsolete version of fdm 6593 as of 29-May-2024. (Contributed by NM, 2-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | ||
Theorem | fdmd 6595 | Deduction form of fdm 6593. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → dom 𝐹 = 𝐴) | ||
Theorem | fdmi 6596 | Inference associated with fdm 6593. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
⊢ 𝐹:𝐴⟶𝐵 ⇒ ⊢ dom 𝐹 = 𝐴 | ||
Theorem | dffn3 6597 | A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | ||
Theorem | ffrn 6598 | A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) | ||
Theorem | ffrnb 6599 | Characterization of a function with domain and codomain (essentially using that the range is always included in the codomain). Generalization of ffrn 6598. (Contributed by BJ, 21-Sep-2024.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) | ||
Theorem | ffrnbd 6600 | A function maps to its range iff the the range is a subset of its codomain. Generalization of ffrn 6598. (Contributed by AV, 20-Sep-2024.) |
⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶ran 𝐹)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |