| Metamath
Proof Explorer Theorem List (p. 66 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iota2df 6501 | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
| Theorem | iota2d 6502* | A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
| Theorem | iota2 6503* | The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | ||
| Theorem | iotan0 6504* | Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) | ||
| Theorem | sniota 6505 | A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) | ||
| Theorem | dfiota4 6506 | The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
| ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) | ||
| Theorem | csbiota 6507* | Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) | ||
| Syntax | wfun 6508 | Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.) |
| wff Fun 𝐴 | ||
| Syntax | wfn 6509 | Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.) |
| wff 𝐴 Fn 𝐵 | ||
| Syntax | wf 6510 | Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.) |
| wff 𝐹:𝐴⟶𝐵 | ||
| Syntax | wf1 6511 | Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–1-1→𝐵 | ||
| Syntax | wfo 6512 | Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–onto→𝐵 | ||
| Syntax | wf1o 6513 | Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27. |
| wff 𝐹:𝐴–1-1-onto→𝐵 | ||
| Syntax | cfv 6514 | Extend the definition of a class to include the value of a function. Read: "the value of 𝐹 at 𝐴", or "𝐹 of 𝐴". |
| class (𝐹‘𝐴) | ||
| Syntax | wiso 6515 | Extend the definition of a wff to include the isomorphism property. Read: "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". |
| wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
| Definition | df-fun 6516 | Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 16043). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 5191 with the maps-to notation (see df-mpt 5192 and df-mpo 7395). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 6517), a function with a given domain and codomain (df-f 6518), a one-to-one function (df-f1 6519), an onto function (df-fo 6520), or a one-to-one onto function (df-f1o 6521). For alternate definitions, see dffun2 6524, dffun3 6528, dffun4 6530, dffun5 6531, dffun6 6527, dffun7 6546, dffun8 6547, and dffun9 6548. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | ||
| Definition | df-fn 6517 | Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6693, dffn3 6703, dffn4 6781, and dffn5 6922. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) | ||
| Definition | df-f 6518 | Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 7074, dff3 7075, and dff4 7076. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | ||
| Definition | df-f1 6519 |
Define a one-to-one function. For equivalent definitions see dff12 6758
and dff13 7232. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow).
A one-to-one function is also called an "injection" or an "injective function", 𝐹:𝐴–1-1→𝐵 can be read as "𝐹 is an injection from 𝐴 into 𝐵". Injections are precisely the monomorphisms in the category SetCat of sets and set functions, see setcmon 18056. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | ||
| Definition | df-fo 6520 |
Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6779, dffo3 7077, dffo4 7078, and dffo5 7079.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 18057. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | ||
| Definition | df-f1o 6521 |
Define a one-to-one onto function. For equivalent definitions see
dff1o2 6808, dff1o3 6809, dff1o4 6811, and dff1o5 6812. Compare Definition
6.15(6) of [TakeutiZaring] p. 27.
We use their notation ("1-1" above
the arrow and "onto" below the arrow).
A one-to-one onto function is also called a "bijection" or a "bijective function", 𝐹:𝐴–1-1-onto→𝐵 can be read as "𝐹 is a bijection between 𝐴 and 𝐵". Bijections are precisely the isomorphisms in the category SetCat of sets and set functions, see setciso 18060. Therefore, two sets are called "isomorphic" if there is a bijection between them. According to isof1oidb 7302, two sets are isomorphic iff there is an isomorphism Isom regarding the identity relation. In this case, the two sets are also "equinumerous", see bren 8931. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | ||
| Definition | df-fv 6522* | Define the value of a function, (𝐹‘𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16125 after we define cosine in df-cos 16043). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5192 and df-mpo 7395), but this is not required. For example, 𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9 (ex-fv 30379). Note that df-ov 7393 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6896 and fvprc 6853). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6959, dffv3 6857, fv2 6856, and fv3 6879 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6951 and funfv2 6952. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6918. (Contributed by NM, 1-Aug-1994.) Revised to use ℩. Original version is now Theorem dffv4 6858. (Revised by Scott Fenton, 6-Oct-2017.) |
| ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | ||
| Definition | df-isom 6523* | Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||
| Theorem | dffun2 6524* | Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
| Theorem | dffun2OLD 6525* | Obsolete version of dffun2 6524 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
| Theorem | dffun2OLDOLD 6526* | Obsolete version of dffun2 6524 as of 11-Dec-2024. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
| Theorem | dffun6 6527* | Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) |
| ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
| Theorem | dffun3 6528* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof shortened by SN, 19-Dec-2024.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
| Theorem | dffun3OLD 6529* | Obsolete version of dffun3 6528 as of 19-Dec-2024. Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
| Theorem | dffun4 6530* | Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | ||
| Theorem | dffun5 6531* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | ||
| Theorem | dffun6f 6532* | Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | ||
| Theorem | dffun6OLD 6533* | Obsolete version of dffun6 6527 as of 19-Dec-2024. (Contributed by NM, 9-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
| Theorem | funmo 6534* | A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) (Proof shortened by SN, 19-Dec-2024.) |
| ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
| Theorem | funmoOLD 6535* | Obsolete version of funmo 6534 as of 19-Dec-2024. (Contributed by NM, 24-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
| Theorem | funrel 6536 | A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (Fun 𝐴 → Rel 𝐴) | ||
| Theorem | 0nelfun 6537 | A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
| ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) | ||
| Theorem | funss 6538 | Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
| ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | ||
| Theorem | funeq 6539 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
| Theorem | funeqi 6540 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (Fun 𝐴 ↔ Fun 𝐵) | ||
| Theorem | funeqd 6541 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
| Theorem | nffun 6542 | Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
| ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥Fun 𝐹 | ||
| Theorem | sbcfung 6543 | Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝐴 / 𝑥⦌𝐹)) | ||
| Theorem | funeu 6544* | There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
| Theorem | funeu2 6545* | There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
| ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ 𝐹) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) | ||
| Theorem | dffun7 6546* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 6547 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | ||
| Theorem | dffun8 6547* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 6546. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) | ||
| Theorem | dffun9 6548* | Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) | ||
| Theorem | funfn 6549 | A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
| ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | ||
| Theorem | funfnd 6550 | A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → Fun 𝐴) ⇒ ⊢ (𝜑 → 𝐴 Fn dom 𝐴) | ||
| Theorem | funi 6551 | The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6649. (Contributed by NM, 30-Apr-1998.) |
| ⊢ Fun I | ||
| Theorem | nfunv 6552 | The universal class is not a function. (Contributed by Raph Levien, 27-Jan-2004.) |
| ⊢ ¬ Fun V | ||
| Theorem | funopg 6553 | A Kuratowski ordered pair of sets is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6570, as relsnopg 5769 is to relop 5817. (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ Fun 〈𝐴, 𝐵〉) → 𝐴 = 𝐵) | ||
| Theorem | funopab 6554* | A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
| ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) | ||
| Theorem | funopabeq 6555* | A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.) |
| ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | ||
| Theorem | funopab4 6556* | A class of ordered pairs of values in the form used by df-mpt 5192 is a function. (Contributed by NM, 17-Feb-2013.) |
| ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} | ||
| Theorem | funmpt 6557 | A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
| Theorem | funmpt2 6558 | Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ Fun 𝐹 | ||
| Theorem | funco 6559 | The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | ||
| Theorem | funresfunco 6560 | Composition of two functions, generalization of funco 6559. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
| ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | ||
| Theorem | funres 6561 | A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | ||
| Theorem | funresd 6562 | A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) | ||
| Theorem | funssres 6563 | The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | ||
| Theorem | fun2ssres 6564 | Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) | ||
| Theorem | funun 6565 | The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹 ∪ 𝐺)) | ||
| Theorem | fununmo 6566* | If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.) |
| ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | ||
| Theorem | fununfun 6567 | If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.) |
| ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) | ||
| Theorem | fundif 6568 | A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
| ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) | ||
| Theorem | funcnvsn 6569 | The converse singleton of an ordered pair is a function. This is equivalent to funsn 6572 via cnvsn 6202, but stating it this way allows to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
| ⊢ Fun ◡{〈𝐴, 𝐵〉} | ||
| Theorem | funsng 6570 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | ||
| Theorem | fnsng 6571 | Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) | ||
| Theorem | funsn 6572 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ Fun {〈𝐴, 𝐵〉} | ||
| Theorem | funprg 6573 | A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
| Theorem | funtpg 6574 | A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → Fun {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}) | ||
| Theorem | funpr 6575 | A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
| Theorem | funtp 6576 | A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) | ||
| Theorem | fnsn 6577 | Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} | ||
| Theorem | fnprg 6578 | Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) | ||
| Theorem | fntpg 6579 | Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
| ⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉} Fn {𝑋, 𝑌, 𝑍}) | ||
| Theorem | fntp 6580 | A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) | ||
| Theorem | funcnvpr 6581 | The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → Fun ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}) | ||
| Theorem | funcnvtp 6582 | The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐵 ≠ 𝐷 ∧ 𝐵 ≠ 𝐹 ∧ 𝐷 ≠ 𝐹)) → Fun ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}) | ||
| Theorem | funcnvqp 6583 | The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) ∧ (𝐸 ∈ 𝑊 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝐵 ≠ 𝐷 ∧ 𝐵 ≠ 𝐹 ∧ 𝐵 ≠ 𝐻) ∧ (𝐷 ≠ 𝐹 ∧ 𝐷 ≠ 𝐻) ∧ 𝐹 ≠ 𝐻)) → Fun ◡({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉})) | ||
| Theorem | fun0 6584 | The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
| ⊢ Fun ∅ | ||
| Theorem | funcnv0 6585 | The converse of the empty set is a function. (Contributed by AV, 7-Jan-2021.) |
| ⊢ Fun ◡∅ | ||
| Theorem | funcnvcnv 6586 | The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
| ⊢ (Fun 𝐴 → Fun ◡◡𝐴) | ||
| Theorem | funcnv2 6587* | A simpler equivalence for single-rooted (see funcnv 6588). (Contributed by NM, 9-Aug-2004.) |
| ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) | ||
| Theorem | funcnv 6588* | The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 6587 for a simpler version. (Contributed by NM, 13-Aug-2004.) |
| ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) | ||
| Theorem | funcnv3 6589* | A condition showing a class is single-rooted. (See funcnv 6588). (Contributed by NM, 26-May-2006.) |
| ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) | ||
| Theorem | fun2cnv 6590* | The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.) |
| ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) | ||
| Theorem | svrelfun 6591 | A single-valued relation is a function. (See fun2cnv 6590 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.) |
| ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) | ||
| Theorem | fncnv 6592* | Single-rootedness (see funcnv 6588) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.) |
| ⊢ (◡(𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦) | ||
| Theorem | fun11 6593* | Two ways of stating that 𝐴 is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.) |
| ⊢ ((Fun ◡◡𝐴 ∧ Fun ◡𝐴) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) | ||
| Theorem | fununi 6594* | The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ∪ 𝐴) | ||
| Theorem | funin 6595 | The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) | ||
| Theorem | funres11 6596 | The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
| ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) | ||
| Theorem | funcnvres 6597 | The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
| ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) | ||
| Theorem | cnvresid 6598 | Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | ||
| Theorem | funcnvres2 6599 | The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.) |
| ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) | ||
| Theorem | funimacnv 6600 | The image of the preimage of a function. (Contributed by NM, 25-May-2004.) |
| ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |